Improving randomness characterization through Bayesian model selection
Abstract Random number generation plays an essential role in technology with important applications in areas ranging from cryptography to Monte Carlo methods, and other probabilistic algorithms. All such applications require high-quality sources of random numbers, yet effective methods for assessing...
Guardado en:
Autores principales: | Rafael Díaz Hernández Rojas, Aldo Solís, Alí M. Angulo Martínez, Alfred B. U’Ren, Jorge G. Hirsch, Matteo Marsili, Isaac Pérez Castillo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db59a8118f7d43a0a4495ce43f1ca6af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian model selection for complex dynamic systems
por: Christoph Mark, et al.
Publicado: (2018) -
Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model.
por: Xiaoying Tang, et al.
Publicado: (2013) -
Improved polygenic prediction by Bayesian multiple regression on summary statistics
por: Luke R. Lloyd-Jones, et al.
Publicado: (2019) -
An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways.
por: Bin Peng, et al.
Publicado: (2013) -
Bayesian variable selection in searching for additive and dominant effects in genome-wide data.
por: Tomi Peltola, et al.
Publicado: (2012)