An Improved Approach towards Multi-Agent Pursuit–Evasion Game Decision-Making Using Deep Reinforcement Learning
A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL) was developed in this paper to address the problem of environment sensing and decision-making in pursuit–evasion game...
Guardado en:
Autores principales: | Kaifang Wan, Dingwei Wu, Yiwei Zhai, Bo Li, Xiaoguang Gao, Zijian Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db85460494d841e789b8fd670265ccb1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum compiling by deep reinforcement learning
por: Lorenzo Moro, et al.
Publicado: (2021) -
Micro and nanoscale 3D printing using optical pickup unit from a gaming console
por: Tien-Jen Chang, et al.
Publicado: (2021) -
Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid
por: Anna Niggas, et al.
Publicado: (2021) -
Quantum spin mixing in Dirac materials
por: Ying-Jiun Chen, et al.
Publicado: (2021) -
Hidden network generating rules from partially observed complex networks
por: Ruochen Yang, et al.
Publicado: (2021)