Evolution of default genetic control mechanisms.
We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expressio...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db8dee6264fe4dcb94f466e9e130ee71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:db8dee6264fe4dcb94f466e9e130ee71 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:db8dee6264fe4dcb94f466e9e130ee712021-12-02T20:04:02ZEvolution of default genetic control mechanisms.1932-620310.1371/journal.pone.0251568https://doaj.org/article/db8dee6264fe4dcb94f466e9e130ee712021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0251568https://doaj.org/toc/1932-6203We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. The model was run 118 times to an average of 1.4∙106 'generations' each with a range of starting parameters probed the conditions under which genomes evolved a 'default style' of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active ('default on'), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated ('default off' logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a 'default off' mode.William BainsEnrico BorrielloDirk Schulze-MakuchPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 5, p e0251568 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q William Bains Enrico Borriello Dirk Schulze-Makuch Evolution of default genetic control mechanisms. |
description |
We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. The model was run 118 times to an average of 1.4∙106 'generations' each with a range of starting parameters probed the conditions under which genomes evolved a 'default style' of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active ('default on'), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated ('default off' logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a 'default off' mode. |
format |
article |
author |
William Bains Enrico Borriello Dirk Schulze-Makuch |
author_facet |
William Bains Enrico Borriello Dirk Schulze-Makuch |
author_sort |
William Bains |
title |
Evolution of default genetic control mechanisms. |
title_short |
Evolution of default genetic control mechanisms. |
title_full |
Evolution of default genetic control mechanisms. |
title_fullStr |
Evolution of default genetic control mechanisms. |
title_full_unstemmed |
Evolution of default genetic control mechanisms. |
title_sort |
evolution of default genetic control mechanisms. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/db8dee6264fe4dcb94f466e9e130ee71 |
work_keys_str_mv |
AT williambains evolutionofdefaultgeneticcontrolmechanisms AT enricoborriello evolutionofdefaultgeneticcontrolmechanisms AT dirkschulzemakuch evolutionofdefaultgeneticcontrolmechanisms |
_version_ |
1718375631658418176 |