Mining Non-Zero-Rare Sequential Patterns On Activity Recognition
Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered mot...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/db9386e360574a0b8af8a601a3176aa3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP). The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities. |
---|