Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile
The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs a...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Al-Khwarizmi College of Engineering – University of Baghdad
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dbbf2ee1a6ed4006a3a4687959e7c768 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dbbf2ee1a6ed4006a3a4687959e7c768 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dbbf2ee1a6ed4006a3a4687959e7c7682021-12-02T04:16:48ZNumerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile1818-1171https://doaj.org/article/dbbf2ee1a6ed4006a3a4687959e7c7682009-01-01T00:00:00Zhttp://www.iasj.net/iasj?func=fulltext&aId=2254https://doaj.org/toc/1818-1171The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormacks technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles have been determined. Computed surface pressures have been compared with experimental data and are found to be in good agreement. The pitching moment coefficient, determined from the computed flow fields, shows the critical aerodynamic behavior observed in free flights.Ahmed F. M. KridiAl-Khwarizmi College of Engineering – University of BaghdadarticleCFDEuler EquationArtillery ProjectileMacCormacks technique.Chemical engineeringTP155-156Engineering (General). Civil engineering (General)TA1-2040ENAl-Khawarizmi Engineering Journal, Vol 5, Iss 1, Pp 42-52 (2009) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
CFD Euler Equation Artillery Projectile MacCormacks technique. Chemical engineering TP155-156 Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
CFD Euler Equation Artillery Projectile MacCormacks technique. Chemical engineering TP155-156 Engineering (General). Civil engineering (General) TA1-2040 Ahmed F. M. Kridi Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile |
description |
The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormacks technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles have been determined. Computed surface pressures have been compared with experimental data and are found to be in good agreement. The pitching moment coefficient, determined from the computed flow fields, shows the critical aerodynamic behavior observed in free flights. |
format |
article |
author |
Ahmed F. M. Kridi |
author_facet |
Ahmed F. M. Kridi |
author_sort |
Ahmed F. M. Kridi |
title |
Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile |
title_short |
Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile |
title_full |
Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile |
title_fullStr |
Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile |
title_full_unstemmed |
Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile |
title_sort |
numerical computations of transonic critical aerodynamicbehavior of a realistic artillery projectile |
publisher |
Al-Khwarizmi College of Engineering – University of Baghdad |
publishDate |
2009 |
url |
https://doaj.org/article/dbbf2ee1a6ed4006a3a4687959e7c768 |
work_keys_str_mv |
AT ahmedfmkridi numericalcomputationsoftransoniccriticalaerodynamicbehaviorofarealisticartilleryprojectile |
_version_ |
1718401339013201920 |