Non-Separable Linear Canonical Wavelet Transform

This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hari M. Srivastava, Firdous A. Shah, Tarun K. Garg, Waseem Z. Lone, Huzaifa L. Qadri
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The preliminary analysis encompasses the derivation of fundamental properties of the novel integral transform including the orthogonality relation, inversion formula, and the range theorem. To extend the scope of the study, we formulate several uncertainty inequalities, including the Heisenberg’s, logarithmic, and Nazorav’s inequalities for the proposed transform in the linear canonical domain. The obtained results are reinforced with illustrative examples.