Non-Separable Linear Canonical Wavelet Transform

This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hari M. Srivastava, Firdous A. Shah, Tarun K. Garg, Waseem Z. Lone, Huzaifa L. Qadri
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dbc97f6417a7477383a211fe21723e0a
record_format dspace
spelling oai:doaj.org-article:dbc97f6417a7477383a211fe21723e0a2021-11-25T19:07:24ZNon-Separable Linear Canonical Wavelet Transform10.3390/sym131121822073-8994https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2182https://doaj.org/toc/2073-8994This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The preliminary analysis encompasses the derivation of fundamental properties of the novel integral transform including the orthogonality relation, inversion formula, and the range theorem. To extend the scope of the study, we formulate several uncertainty inequalities, including the Heisenberg’s, logarithmic, and Nazorav’s inequalities for the proposed transform in the linear canonical domain. The obtained results are reinforced with illustrative examples.Hari M. SrivastavaFirdous A. ShahTarun K. GargWaseem Z. LoneHuzaifa L. QadriMDPI AGarticlenon-separable linear canonical waveletsymplectic matrixnon-separable linear canonical transformuncertainty principleMathematicsQA1-939ENSymmetry, Vol 13, Iss 2182, p 2182 (2021)
institution DOAJ
collection DOAJ
language EN
topic non-separable linear canonical wavelet
symplectic matrix
non-separable linear canonical transform
uncertainty principle
Mathematics
QA1-939
spellingShingle non-separable linear canonical wavelet
symplectic matrix
non-separable linear canonical transform
uncertainty principle
Mathematics
QA1-939
Hari M. Srivastava
Firdous A. Shah
Tarun K. Garg
Waseem Z. Lone
Huzaifa L. Qadri
Non-Separable Linear Canonical Wavelet Transform
description This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The preliminary analysis encompasses the derivation of fundamental properties of the novel integral transform including the orthogonality relation, inversion formula, and the range theorem. To extend the scope of the study, we formulate several uncertainty inequalities, including the Heisenberg’s, logarithmic, and Nazorav’s inequalities for the proposed transform in the linear canonical domain. The obtained results are reinforced with illustrative examples.
format article
author Hari M. Srivastava
Firdous A. Shah
Tarun K. Garg
Waseem Z. Lone
Huzaifa L. Qadri
author_facet Hari M. Srivastava
Firdous A. Shah
Tarun K. Garg
Waseem Z. Lone
Huzaifa L. Qadri
author_sort Hari M. Srivastava
title Non-Separable Linear Canonical Wavelet Transform
title_short Non-Separable Linear Canonical Wavelet Transform
title_full Non-Separable Linear Canonical Wavelet Transform
title_fullStr Non-Separable Linear Canonical Wavelet Transform
title_full_unstemmed Non-Separable Linear Canonical Wavelet Transform
title_sort non-separable linear canonical wavelet transform
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a
work_keys_str_mv AT harimsrivastava nonseparablelinearcanonicalwavelettransform
AT firdousashah nonseparablelinearcanonicalwavelettransform
AT tarunkgarg nonseparablelinearcanonicalwavelettransform
AT waseemzlone nonseparablelinearcanonicalwavelettransform
AT huzaifalqadri nonseparablelinearcanonicalwavelettransform
_version_ 1718410309942640640