Non-Separable Linear Canonical Wavelet Transform
This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dbc97f6417a7477383a211fe21723e0a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dbc97f6417a7477383a211fe21723e0a2021-11-25T19:07:24ZNon-Separable Linear Canonical Wavelet Transform10.3390/sym131121822073-8994https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2182https://doaj.org/toc/2073-8994This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The preliminary analysis encompasses the derivation of fundamental properties of the novel integral transform including the orthogonality relation, inversion formula, and the range theorem. To extend the scope of the study, we formulate several uncertainty inequalities, including the Heisenberg’s, logarithmic, and Nazorav’s inequalities for the proposed transform in the linear canonical domain. The obtained results are reinforced with illustrative examples.Hari M. SrivastavaFirdous A. ShahTarun K. GargWaseem Z. LoneHuzaifa L. QadriMDPI AGarticlenon-separable linear canonical waveletsymplectic matrixnon-separable linear canonical transformuncertainty principleMathematicsQA1-939ENSymmetry, Vol 13, Iss 2182, p 2182 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
non-separable linear canonical wavelet symplectic matrix non-separable linear canonical transform uncertainty principle Mathematics QA1-939 |
spellingShingle |
non-separable linear canonical wavelet symplectic matrix non-separable linear canonical transform uncertainty principle Mathematics QA1-939 Hari M. Srivastava Firdous A. Shah Tarun K. Garg Waseem Z. Lone Huzaifa L. Qadri Non-Separable Linear Canonical Wavelet Transform |
description |
This study aims to achieve an efficient time-frequency representation of higher-dimensional signals by introducing the notion of a non-separable linear canonical wavelet transform in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The preliminary analysis encompasses the derivation of fundamental properties of the novel integral transform including the orthogonality relation, inversion formula, and the range theorem. To extend the scope of the study, we formulate several uncertainty inequalities, including the Heisenberg’s, logarithmic, and Nazorav’s inequalities for the proposed transform in the linear canonical domain. The obtained results are reinforced with illustrative examples. |
format |
article |
author |
Hari M. Srivastava Firdous A. Shah Tarun K. Garg Waseem Z. Lone Huzaifa L. Qadri |
author_facet |
Hari M. Srivastava Firdous A. Shah Tarun K. Garg Waseem Z. Lone Huzaifa L. Qadri |
author_sort |
Hari M. Srivastava |
title |
Non-Separable Linear Canonical Wavelet Transform |
title_short |
Non-Separable Linear Canonical Wavelet Transform |
title_full |
Non-Separable Linear Canonical Wavelet Transform |
title_fullStr |
Non-Separable Linear Canonical Wavelet Transform |
title_full_unstemmed |
Non-Separable Linear Canonical Wavelet Transform |
title_sort |
non-separable linear canonical wavelet transform |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/dbc97f6417a7477383a211fe21723e0a |
work_keys_str_mv |
AT harimsrivastava nonseparablelinearcanonicalwavelettransform AT firdousashah nonseparablelinearcanonicalwavelettransform AT tarunkgarg nonseparablelinearcanonicalwavelettransform AT waseemzlone nonseparablelinearcanonicalwavelettransform AT huzaifalqadri nonseparablelinearcanonicalwavelettransform |
_version_ |
1718410309942640640 |