Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
Congenital heart disease (CHD) patients are at risk for neurodevelopmental impairments, including altered motor function. However, little is known about the neuroanatomical correlates of persistent motor deficits in CHD. Thus, we examined the link between corticospinal tract (CST) microstructure and...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dbd3d5ccb6044bc88dacd716867ec3dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dbd3d5ccb6044bc88dacd716867ec3dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dbd3d5ccb6044bc88dacd716867ec3dd2021-11-24T04:29:05ZMicrostructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease2213-158210.1016/j.nicl.2021.102885https://doaj.org/article/dbd3d5ccb6044bc88dacd716867ec3dd2021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2213158221003296https://doaj.org/toc/2213-1582Congenital heart disease (CHD) patients are at risk for neurodevelopmental impairments, including altered motor function. However, little is known about the neuroanatomical correlates of persistent motor deficits in CHD. Thus, we examined the link between corticospinal tract (CST) microstructure and motor function in adolescent and adult CHD patients compared to healthy controls.This study investigated 89 CHD patients (N(adolescents) = 47, N(adults) = 42, mean age = 19.9 years) and 97 age-matched healthy controls (N(adolescents) = 44, N(adults) = 53, mean age = 20.6 years). Diffusion tensor imaging was conducted and fractional anisotropy (FA) of the left and right CST was extracted for each participant. Fine (pegboard) and pure motor (repeated finger, hand and foot movements) performance was evaluated with a standardized test battery. FA and motor performance were correlated and the effect of CHD complexity was tested using multivariate linear regression.Clinically relevant motor impairments (>2SD below normative mean) were evident in 24% of patients and 9% of controls. On average, motor performance was lower in CHD patients compared to controls, particularly in those with more complex CHD (fine motor: p = 0.023; pure motor: p < 0.001). FA CST was lower in patients compared to controls, particularly in those with more complex CHD (left: p < 0.001, right: p = 0.003). There was a significant interaction between CHD complexity and FA CST (left: p = 0.025, right: p = 0.025), indicating that FA correlates significantly with pure motor in patients with severe CHD, while there is only a weak association in moderate CHD and no association in patients with simple CHD and controls.Microstructure of the CST is altered in CHD patients, and is associated with pure motor impairments in patients with severe CHD. This indicates that persistent motor impairments may arise from atypical development of the primary motor pathway in the presence of a complex CHD. Early interventions promoting brain maturation in infancy may prevent persisting impairments across the lifetime.Melanie EhrlerMichael von RheinLadina SchlosserPeter BruggerMatthias GreutmannOliver KretschmarBeatrice LatalRuth Tuura O'GormanElsevierarticleDiffusion tensor imagingCongenital heart diseaseMotor functionWhite matter microstructureCorticospinal tractNeurodevelopmentComputer applications to medicine. Medical informaticsR858-859.7Neurology. Diseases of the nervous systemRC346-429ENNeuroImage: Clinical, Vol 32, Iss , Pp 102885- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Diffusion tensor imaging Congenital heart disease Motor function White matter microstructure Corticospinal tract Neurodevelopment Computer applications to medicine. Medical informatics R858-859.7 Neurology. Diseases of the nervous system RC346-429 |
spellingShingle |
Diffusion tensor imaging Congenital heart disease Motor function White matter microstructure Corticospinal tract Neurodevelopment Computer applications to medicine. Medical informatics R858-859.7 Neurology. Diseases of the nervous system RC346-429 Melanie Ehrler Michael von Rhein Ladina Schlosser Peter Brugger Matthias Greutmann Oliver Kretschmar Beatrice Latal Ruth Tuura O'Gorman Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
description |
Congenital heart disease (CHD) patients are at risk for neurodevelopmental impairments, including altered motor function. However, little is known about the neuroanatomical correlates of persistent motor deficits in CHD. Thus, we examined the link between corticospinal tract (CST) microstructure and motor function in adolescent and adult CHD patients compared to healthy controls.This study investigated 89 CHD patients (N(adolescents) = 47, N(adults) = 42, mean age = 19.9 years) and 97 age-matched healthy controls (N(adolescents) = 44, N(adults) = 53, mean age = 20.6 years). Diffusion tensor imaging was conducted and fractional anisotropy (FA) of the left and right CST was extracted for each participant. Fine (pegboard) and pure motor (repeated finger, hand and foot movements) performance was evaluated with a standardized test battery. FA and motor performance were correlated and the effect of CHD complexity was tested using multivariate linear regression.Clinically relevant motor impairments (>2SD below normative mean) were evident in 24% of patients and 9% of controls. On average, motor performance was lower in CHD patients compared to controls, particularly in those with more complex CHD (fine motor: p = 0.023; pure motor: p < 0.001). FA CST was lower in patients compared to controls, particularly in those with more complex CHD (left: p < 0.001, right: p = 0.003). There was a significant interaction between CHD complexity and FA CST (left: p = 0.025, right: p = 0.025), indicating that FA correlates significantly with pure motor in patients with severe CHD, while there is only a weak association in moderate CHD and no association in patients with simple CHD and controls.Microstructure of the CST is altered in CHD patients, and is associated with pure motor impairments in patients with severe CHD. This indicates that persistent motor impairments may arise from atypical development of the primary motor pathway in the presence of a complex CHD. Early interventions promoting brain maturation in infancy may prevent persisting impairments across the lifetime. |
format |
article |
author |
Melanie Ehrler Michael von Rhein Ladina Schlosser Peter Brugger Matthias Greutmann Oliver Kretschmar Beatrice Latal Ruth Tuura O'Gorman |
author_facet |
Melanie Ehrler Michael von Rhein Ladina Schlosser Peter Brugger Matthias Greutmann Oliver Kretschmar Beatrice Latal Ruth Tuura O'Gorman |
author_sort |
Melanie Ehrler |
title |
Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
title_short |
Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
title_full |
Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
title_fullStr |
Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
title_full_unstemmed |
Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
title_sort |
microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/dbd3d5ccb6044bc88dacd716867ec3dd |
work_keys_str_mv |
AT melanieehrler microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT michaelvonrhein microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT ladinaschlosser microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT peterbrugger microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT matthiasgreutmann microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT oliverkretschmar microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT beatricelatal microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease AT ruthtuuraogorman microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease |
_version_ |
1718416005987827712 |