Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease

Congenital heart disease (CHD) patients are at risk for neurodevelopmental impairments, including altered motor function. However, little is known about the neuroanatomical correlates of persistent motor deficits in CHD. Thus, we examined the link between corticospinal tract (CST) microstructure and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Melanie Ehrler, Michael von Rhein, Ladina Schlosser, Peter Brugger, Matthias Greutmann, Oliver Kretschmar, Beatrice Latal, Ruth Tuura O'Gorman
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/dbd3d5ccb6044bc88dacd716867ec3dd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dbd3d5ccb6044bc88dacd716867ec3dd
record_format dspace
spelling oai:doaj.org-article:dbd3d5ccb6044bc88dacd716867ec3dd2021-11-24T04:29:05ZMicrostructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease2213-158210.1016/j.nicl.2021.102885https://doaj.org/article/dbd3d5ccb6044bc88dacd716867ec3dd2021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2213158221003296https://doaj.org/toc/2213-1582Congenital heart disease (CHD) patients are at risk for neurodevelopmental impairments, including altered motor function. However, little is known about the neuroanatomical correlates of persistent motor deficits in CHD. Thus, we examined the link between corticospinal tract (CST) microstructure and motor function in adolescent and adult CHD patients compared to healthy controls.This study investigated 89 CHD patients (N(adolescents) = 47, N(adults) = 42, mean age = 19.9 years) and 97 age-matched healthy controls (N(adolescents) = 44, N(adults) = 53, mean age = 20.6 years). Diffusion tensor imaging was conducted and fractional anisotropy (FA) of the left and right CST was extracted for each participant. Fine (pegboard) and pure motor (repeated finger, hand and foot movements) performance was evaluated with a standardized test battery. FA and motor performance were correlated and the effect of CHD complexity was tested using multivariate linear regression.Clinically relevant motor impairments (>2SD below normative mean) were evident in 24% of patients and 9% of controls. On average, motor performance was lower in CHD patients compared to controls, particularly in those with more complex CHD (fine motor: p = 0.023; pure motor: p < 0.001). FA CST was lower in patients compared to controls, particularly in those with more complex CHD (left: p < 0.001, right: p = 0.003). There was a significant interaction between CHD complexity and FA CST (left: p = 0.025, right: p = 0.025), indicating that FA correlates significantly with pure motor in patients with severe CHD, while there is only a weak association in moderate CHD and no association in patients with simple CHD and controls.Microstructure of the CST is altered in CHD patients, and is associated with pure motor impairments in patients with severe CHD. This indicates that persistent motor impairments may arise from atypical development of the primary motor pathway in the presence of a complex CHD. Early interventions promoting brain maturation in infancy may prevent persisting impairments across the lifetime.Melanie EhrlerMichael von RheinLadina SchlosserPeter BruggerMatthias GreutmannOliver KretschmarBeatrice LatalRuth Tuura O'GormanElsevierarticleDiffusion tensor imagingCongenital heart diseaseMotor functionWhite matter microstructureCorticospinal tractNeurodevelopmentComputer applications to medicine. Medical informaticsR858-859.7Neurology. Diseases of the nervous systemRC346-429ENNeuroImage: Clinical, Vol 32, Iss , Pp 102885- (2021)
institution DOAJ
collection DOAJ
language EN
topic Diffusion tensor imaging
Congenital heart disease
Motor function
White matter microstructure
Corticospinal tract
Neurodevelopment
Computer applications to medicine. Medical informatics
R858-859.7
Neurology. Diseases of the nervous system
RC346-429
spellingShingle Diffusion tensor imaging
Congenital heart disease
Motor function
White matter microstructure
Corticospinal tract
Neurodevelopment
Computer applications to medicine. Medical informatics
R858-859.7
Neurology. Diseases of the nervous system
RC346-429
Melanie Ehrler
Michael von Rhein
Ladina Schlosser
Peter Brugger
Matthias Greutmann
Oliver Kretschmar
Beatrice Latal
Ruth Tuura O'Gorman
Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
description Congenital heart disease (CHD) patients are at risk for neurodevelopmental impairments, including altered motor function. However, little is known about the neuroanatomical correlates of persistent motor deficits in CHD. Thus, we examined the link between corticospinal tract (CST) microstructure and motor function in adolescent and adult CHD patients compared to healthy controls.This study investigated 89 CHD patients (N(adolescents) = 47, N(adults) = 42, mean age = 19.9 years) and 97 age-matched healthy controls (N(adolescents) = 44, N(adults) = 53, mean age = 20.6 years). Diffusion tensor imaging was conducted and fractional anisotropy (FA) of the left and right CST was extracted for each participant. Fine (pegboard) and pure motor (repeated finger, hand and foot movements) performance was evaluated with a standardized test battery. FA and motor performance were correlated and the effect of CHD complexity was tested using multivariate linear regression.Clinically relevant motor impairments (>2SD below normative mean) were evident in 24% of patients and 9% of controls. On average, motor performance was lower in CHD patients compared to controls, particularly in those with more complex CHD (fine motor: p = 0.023; pure motor: p < 0.001). FA CST was lower in patients compared to controls, particularly in those with more complex CHD (left: p < 0.001, right: p = 0.003). There was a significant interaction between CHD complexity and FA CST (left: p = 0.025, right: p = 0.025), indicating that FA correlates significantly with pure motor in patients with severe CHD, while there is only a weak association in moderate CHD and no association in patients with simple CHD and controls.Microstructure of the CST is altered in CHD patients, and is associated with pure motor impairments in patients with severe CHD. This indicates that persistent motor impairments may arise from atypical development of the primary motor pathway in the presence of a complex CHD. Early interventions promoting brain maturation in infancy may prevent persisting impairments across the lifetime.
format article
author Melanie Ehrler
Michael von Rhein
Ladina Schlosser
Peter Brugger
Matthias Greutmann
Oliver Kretschmar
Beatrice Latal
Ruth Tuura O'Gorman
author_facet Melanie Ehrler
Michael von Rhein
Ladina Schlosser
Peter Brugger
Matthias Greutmann
Oliver Kretschmar
Beatrice Latal
Ruth Tuura O'Gorman
author_sort Melanie Ehrler
title Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
title_short Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
title_full Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
title_fullStr Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
title_full_unstemmed Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
title_sort microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease
publisher Elsevier
publishDate 2021
url https://doaj.org/article/dbd3d5ccb6044bc88dacd716867ec3dd
work_keys_str_mv AT melanieehrler microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT michaelvonrhein microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT ladinaschlosser microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT peterbrugger microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT matthiasgreutmann microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT oliverkretschmar microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT beatricelatal microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
AT ruthtuuraogorman microstructuralalterationsofthecorticospinaltractareassociatedwithpoormotorfunctioninpatientswithseverecongenitalheartdisease
_version_ 1718416005987827712