The CloudUPDRS smartphone software in Parkinson’s study: cross-validation against blinded human raters

Abstract Digital assessments of motor severity could improve the sensitivity of clinical trials and personalise treatment in Parkinson’s disease (PD) but have yet to be widely adopted. Their ability to capture individual change across the heterogeneous motor presentations typical of PD remains inade...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ashwani Jha, Elisa Menozzi, Rebecca Oyekan, Anna Latorre, Eoin Mulroy, Sebastian R. Schreglmann, Cosmin Stamate, Ioannis Daskalopoulos, Stefan Kueppers, Marco Luchini, John C. Rothwell, George Roussos, Kailash P. Bhatia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/dbd853c5a047468e8202a0decd920ae5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Digital assessments of motor severity could improve the sensitivity of clinical trials and personalise treatment in Parkinson’s disease (PD) but have yet to be widely adopted. Their ability to capture individual change across the heterogeneous motor presentations typical of PD remains inadequately tested against current clinical reference standards. We conducted a prospective, dual-site, crossover-randomised study to determine the ability of a 16-item smartphone-based assessment (the index test) to predict subitems from the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) as assessed by three blinded clinical raters (the reference-standard). We analysed data from 60 subjects (990 smartphone tests, 2628 blinded video MDS-UPDRS III subitem ratings). Subject-level predictive performance was quantified as the leave-one-subject-out cross-validation (LOSO-CV) accuracy. A pre-specified analysis classified 70.3% (SEM 5.9%) of subjects into a similar category to any of three blinded clinical raters and was better than random (36.7%; SEM 4.3%) classification. Post hoc optimisation of classifier and feature selection improved performance further (78.7%, SEM 5.1%), although individual subtests were variable (range 53.2–97.0%). Smartphone-based measures of motor severity have predictive value at the subject level. Future studies should similarly mitigate against subjective and feature selection biases and assess performance across a range of motor features as part of a broader strategy to avoid overly optimistic performance estimates.