A versatile, automated and high-throughput drug screening platform for zebrafish embryos

Zebrafish provide a unique opportunity for drug screening in living animals, with the fast-developing, transparent embryos allowing for relatively high-throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zeb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexandra Lubin, Jason Otterstrom, Yvette Hoade, Ivana Bjedov, Eleanor Stead, Matthew Whelan, Gaia Gestri, Yael Paran, Elspeth Payne
Formato: article
Lenguaje:EN
Publicado: The Company of Biologists 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dbe9a58d3e134c6e8b6b6f9413ca06f5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Zebrafish provide a unique opportunity for drug screening in living animals, with the fast-developing, transparent embryos allowing for relatively high-throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed an easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan® Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft® Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and X-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high-content screening in zebrafish. This article has an associated First Person interview with the first author of the paper.