Deep Learning-Based Prediction of Throttle Value and State for Wheel Loaders
Accurate prediction of the throttle value and state for wheel loaders can help to achieve autonomous operation, thereby reducing the cost and accident rate. However, existing methods based on a physical model cannot accurately reflect the operator’s driving habits and the interaction between wheel l...
Enregistré dans:
Auteurs principaux: | Jianfei Huang, Xinchun Cheng, Yuying Shen, Dewen Kong, Jixin Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dbea8f638b3d4011b4bb15b459b2497a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Study on modeling and numerical analysis for the prediction of wheel wear development
par: Ariku YOSHIOKA, et autres
Publié: (2017) -
Histone Loaders CAF1 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation
par: Yuchen Zhang, et autres
Publié: (2020) -
Model Predictive Control-Based Integrated Path Tracking and Velocity Control for Autonomous Vehicle with Four-Wheel Independent Steering and Driving
par: Yonghwan Jeong, et autres
Publié: (2021) -
Robust model predictive kinematic tracking control with terminal region for wheeled robotic systems
par: Phuong Nam Dao, et autres
Publié: (2021) -
An Extended Car-Following Model Based on Visual Angle and Electronic Throttle Effect
par: Hongxia Ge, et autres
Publié: (2021)