Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.

Sepsis is a potentially life-threatening condition that requires prompt recognition and treatment. Recently, heart rate variability (HRV), a measure of the cardiac autonomic regulation derived from short electrocardiogram tracings, has been found to correlate with sepsis mortality. This paper presen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nan Liu, Marcel Lucas Chee, Mabel Zhi Qi Foo, Jeremy Zhenwen Pong, Dagang Guo, Zhi Xiong Koh, Andrew Fu Wah Ho, Chenglin Niu, Shu-Ling Chong, Marcus Eng Hock Ong
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dbea9251d54148da864c1033975ea23a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dbea9251d54148da864c1033975ea23a
record_format dspace
spelling oai:doaj.org-article:dbea9251d54148da864c1033975ea23a2021-12-02T20:14:52ZHeart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.1932-620310.1371/journal.pone.0249868https://doaj.org/article/dbea9251d54148da864c1033975ea23a2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0249868https://doaj.org/toc/1932-6203Sepsis is a potentially life-threatening condition that requires prompt recognition and treatment. Recently, heart rate variability (HRV), a measure of the cardiac autonomic regulation derived from short electrocardiogram tracings, has been found to correlate with sepsis mortality. This paper presents using novel heart rate n-variability (HRnV) measures for sepsis mortality risk prediction and comparing against current mortality prediction scores. This study was a retrospective cohort study on patients presenting to the emergency department of a tertiary hospital in Singapore between September 2014 to April 2017. Patients were included if they were above 21 years old and were suspected of having sepsis by their attending physician. The primary outcome was 30-day in-hospital mortality. Stepwise multivariable logistic regression model was built to predict the outcome, and the results based on 10-fold cross-validation were presented using receiver operating curve analysis. The final predictive model comprised 21 variables, including four vital signs, two HRV parameters, and 15 HRnV parameters. The area under the curve of the model was 0.77 (95% confidence interval 0.70-0.84), outperforming several established clinical scores. The HRnV measures may have the potential to allow for a rapid, objective, and accurate means of patient risk stratification for sepsis severity and mortality. Our exploration of the use of wealthy inherent information obtained from novel HRnV measures could also create a new perspective for data scientists to develop innovative approaches for ECG analysis and risk monitoring.Nan LiuMarcel Lucas CheeMabel Zhi Qi FooJeremy Zhenwen PongDagang GuoZhi Xiong KohAndrew Fu Wah HoChenglin NiuShu-Ling ChongMarcus Eng Hock OngPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0249868 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Nan Liu
Marcel Lucas Chee
Mabel Zhi Qi Foo
Jeremy Zhenwen Pong
Dagang Guo
Zhi Xiong Koh
Andrew Fu Wah Ho
Chenglin Niu
Shu-Ling Chong
Marcus Eng Hock Ong
Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.
description Sepsis is a potentially life-threatening condition that requires prompt recognition and treatment. Recently, heart rate variability (HRV), a measure of the cardiac autonomic regulation derived from short electrocardiogram tracings, has been found to correlate with sepsis mortality. This paper presents using novel heart rate n-variability (HRnV) measures for sepsis mortality risk prediction and comparing against current mortality prediction scores. This study was a retrospective cohort study on patients presenting to the emergency department of a tertiary hospital in Singapore between September 2014 to April 2017. Patients were included if they were above 21 years old and were suspected of having sepsis by their attending physician. The primary outcome was 30-day in-hospital mortality. Stepwise multivariable logistic regression model was built to predict the outcome, and the results based on 10-fold cross-validation were presented using receiver operating curve analysis. The final predictive model comprised 21 variables, including four vital signs, two HRV parameters, and 15 HRnV parameters. The area under the curve of the model was 0.77 (95% confidence interval 0.70-0.84), outperforming several established clinical scores. The HRnV measures may have the potential to allow for a rapid, objective, and accurate means of patient risk stratification for sepsis severity and mortality. Our exploration of the use of wealthy inherent information obtained from novel HRnV measures could also create a new perspective for data scientists to develop innovative approaches for ECG analysis and risk monitoring.
format article
author Nan Liu
Marcel Lucas Chee
Mabel Zhi Qi Foo
Jeremy Zhenwen Pong
Dagang Guo
Zhi Xiong Koh
Andrew Fu Wah Ho
Chenglin Niu
Shu-Ling Chong
Marcus Eng Hock Ong
author_facet Nan Liu
Marcel Lucas Chee
Mabel Zhi Qi Foo
Jeremy Zhenwen Pong
Dagang Guo
Zhi Xiong Koh
Andrew Fu Wah Ho
Chenglin Niu
Shu-Ling Chong
Marcus Eng Hock Ong
author_sort Nan Liu
title Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.
title_short Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.
title_full Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.
title_fullStr Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.
title_full_unstemmed Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department.
title_sort heart rate n-variability (hrnv) measures for prediction of mortality in sepsis patients presenting at the emergency department.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/dbea9251d54148da864c1033975ea23a
work_keys_str_mv AT nanliu heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT marcellucaschee heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT mabelzhiqifoo heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT jeremyzhenwenpong heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT dagangguo heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT zhixiongkoh heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT andrewfuwahho heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT chenglinniu heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT shulingchong heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
AT marcusenghockong heartratenvariabilityhrnvmeasuresforpredictionofmortalityinsepsispatientspresentingattheemergencydepartment
_version_ 1718374673831428096