Current PIλ Control of the Single-Phase Grid Inverter
In a grid-connected power generation system, the grid-connected current of the inverter is sensitive to nonlinear factors such as periodic disturbance of grid voltage, which results in grid-connected current waveform distortion. By establishing a single-phase photovoltaic grid-connected inverter con...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dbf335d05cc84931a50e7cea23dbe3c4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | In a grid-connected power generation system, the grid-connected current of the inverter is sensitive to nonlinear factors such as periodic disturbance of grid voltage, which results in grid-connected current waveform distortion. By establishing a single-phase photovoltaic grid-connected inverter control system model, designing an inverse current fractional-order PI (PIλ or FO-PI) controller and the dynamic and steady-state performance, antidisturbance and grid connection inversion characteristics of the system are simulated and compared under the action of the integer-order PI controller and fractional-order PI controller. The quality of the inverter grid-connected current is analyzed by using the fast Fourier transform (FFT). The simulation results show that the fractional-order control system can reduce the total harmonic distortion (THD) of the grid-connected current and dynamic performance and antidisturbance ability of the improving system while satisfying the steady-state performance indexes. |
---|