Redistribution of Energy during Interaction of a Shock Wave with a Temperature Layered Plasma Region at Hypersonic Speeds
The paper is devoted to the problem of the interaction between a shock wave and a thermally stratified energy source for the purpose of supersonic/hypersonic flow control realization. The effect of the thermally stratified energy source on a shock wave with the Mach number in the range of 6–12 is re...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dc2fb9dfbd81439cb3a0a5da087c5cdc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | The paper is devoted to the problem of the interaction between a shock wave and a thermally stratified energy source for the purpose of supersonic/hypersonic flow control realization. The effect of the thermally stratified energy source on a shock wave with the Mach number in the range of 6–12 is researched numerically based on the Navier-Stokes system of equations. Redistribution of specific internal energy and volume density of kinetic energy behind the wave front is investigated. Multiple manifestations of the Richtmyer-Meshkov instability has been obtained which has caused the blurring and disappearance of shock wave and contact discontinuity fronts in density fields. A study of the efficiency of using a stratified energy source instead of a homogeneous one with the same value of the full energy is carried out. The agreement with the available experimental data for the shock wave Mach number 6 has been obtained. |
---|