Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
Abstract Background Atrial fibrillation is a paroxysmal heart disease without any obvious symptoms for most people during the onset. The electrocardiogram (ECG) at the time other than the onset of this disease is not significantly different from that of normal people, which makes it difficult to det...
Guardado en:
Autores principales: | Cai Wu, Maxwell Hwang, Tian-Hsiang Huang, Yen-Ming J. Chen, Yiu-Jen Chang, Tsung-Han Ho, Jian Huang, Kao-Shing Hwang, Wen-Hsien Ho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc335e28fd3c4e2a84533e1c01858bbd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
- Journal of atrial fibrillation
-
Metabolomic and Proteomic Analyses of Persistent Valvular Atrial Fibrillation and Non-Valvular Atrial Fibrillation
por: Bo Hu, et al.
Publicado: (2021) -
Predictors of Atrial Fibrillation Recurrences after a First Radiofrequency Catheter Ablation Intervention for Paroxysmal Atrial Fibrillation—Experience of a Low Volume Ablation Centre
por: Lavinia-Lucia Matei, et al.
Publicado: (2021) -
Risk factors of left atrial appendage thrombus in patients with non-valvular atrial fibrillation
por: Liu Yaowu, et al.
Publicado: (2021) -
Periprocedural and Short‐Term Outcomes of Percutaneous Left Atrial Appendage Closure According to Type of Atrial Fibrillation
por: Toshiaki Isogai, et al.
Publicado: (2021)