A Bayesian-Deep Learning Model for Estimating COVID-19 Evolution in Spain
This work proposes a semi-parametric approach to estimate the evolution of COVID-19 (SARS-CoV-2) in Spain. Considering the sequences of 14-day cumulative incidence of all Spanish regions, it combines modern Deep Learning (DL) techniques for analyzing sequences with the usual Bayesian Poisson-Gamma m...
Guardado en:
Autor principal: | Stefano Cabras |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc424874f2aa4618a1bb441a35bb266b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Bidirectional Long Short-Term Memory Model Algorithm for Predicting COVID-19 in Gulf Countries
por: Theyazn H. H. Aldhyani, et al.
Publicado: (2021) -
The Interaction of Natural and Vaccine-Induced Immunity with Social Distancing Predicts the Evolution of the COVID-19 Pandemic
por: Michael F. Good, et al.
Publicado: (2020) -
Common Laboratory Mice Are Susceptible to Infection with the SARS-CoV-2 Beta Variant
por: Ravi Kant, et al.
Publicado: (2021) -
Codon usage, phylogeny and binding energy estimation predict the evolution of SARS-CoV-2
por: Matteo Calcagnile, et al.
Publicado: (2021) -
La Saliva como Biomuestra para Diagnóstico de Infección por SARS-CoV-2: Una Revisión
por: Morales-Espinosa,Rolando
Publicado: (2020)