Artificial intelligence reveals environmental constraints on colour diversity in insects
Deep learning has the potential to identify ecological relationships between environment and complex phenotypes that are difficult to quantify. Here, the authors use deep learning to analyse associations among elevation, climate and phenotype across ~2000 moth species in Taiwan.
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc466aa936c54bc19c7b8be7368e654b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dc466aa936c54bc19c7b8be7368e654b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dc466aa936c54bc19c7b8be7368e654b2021-12-02T16:57:19ZArtificial intelligence reveals environmental constraints on colour diversity in insects10.1038/s41467-019-12500-22041-1723https://doaj.org/article/dc466aa936c54bc19c7b8be7368e654b2019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12500-2https://doaj.org/toc/2041-1723Deep learning has the potential to identify ecological relationships between environment and complex phenotypes that are difficult to quantify. Here, the authors use deep learning to analyse associations among elevation, climate and phenotype across ~2000 moth species in Taiwan.Shipher WuChun-Min ChangGuan-Shuo MaiDustin R. RubensteinChen-Ming YangYu-Ting HuangHsu-Hong LinLi-Cheng ShihSheng-Wei ChenSheng-Feng ShenNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shipher Wu Chun-Min Chang Guan-Shuo Mai Dustin R. Rubenstein Chen-Ming Yang Yu-Ting Huang Hsu-Hong Lin Li-Cheng Shih Sheng-Wei Chen Sheng-Feng Shen Artificial intelligence reveals environmental constraints on colour diversity in insects |
description |
Deep learning has the potential to identify ecological relationships between environment and complex phenotypes that are difficult to quantify. Here, the authors use deep learning to analyse associations among elevation, climate and phenotype across ~2000 moth species in Taiwan. |
format |
article |
author |
Shipher Wu Chun-Min Chang Guan-Shuo Mai Dustin R. Rubenstein Chen-Ming Yang Yu-Ting Huang Hsu-Hong Lin Li-Cheng Shih Sheng-Wei Chen Sheng-Feng Shen |
author_facet |
Shipher Wu Chun-Min Chang Guan-Shuo Mai Dustin R. Rubenstein Chen-Ming Yang Yu-Ting Huang Hsu-Hong Lin Li-Cheng Shih Sheng-Wei Chen Sheng-Feng Shen |
author_sort |
Shipher Wu |
title |
Artificial intelligence reveals environmental constraints on colour diversity in insects |
title_short |
Artificial intelligence reveals environmental constraints on colour diversity in insects |
title_full |
Artificial intelligence reveals environmental constraints on colour diversity in insects |
title_fullStr |
Artificial intelligence reveals environmental constraints on colour diversity in insects |
title_full_unstemmed |
Artificial intelligence reveals environmental constraints on colour diversity in insects |
title_sort |
artificial intelligence reveals environmental constraints on colour diversity in insects |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/dc466aa936c54bc19c7b8be7368e654b |
work_keys_str_mv |
AT shipherwu artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT chunminchang artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT guanshuomai artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT dustinrrubenstein artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT chenmingyang artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT yutinghuang artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT hsuhonglin artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT lichengshih artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT shengweichen artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects AT shengfengshen artificialintelligencerevealsenvironmentalconstraintsoncolourdiversityininsects |
_version_ |
1718382594152726528 |