Artificial intelligence reveals environmental constraints on colour diversity in insects
Deep learning has the potential to identify ecological relationships between environment and complex phenotypes that are difficult to quantify. Here, the authors use deep learning to analyse associations among elevation, climate and phenotype across ~2000 moth species in Taiwan.
Enregistré dans:
Auteurs principaux: | Shipher Wu, Chun-Min Chang, Guan-Shuo Mai, Dustin R. Rubenstein, Chen-Ming Yang, Yu-Ting Huang, Hsu-Hong Lin, Li-Cheng Shih, Sheng-Wei Chen, Sheng-Feng Shen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dc466aa936c54bc19c7b8be7368e654b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Forage-Fed Insects as Food and Feed Source: Opportunities and Constraints of Edible Insects in the Tropics
par: Paula Andrea Espitia Buitrago, et autres
Publié: (2021) -
General intelligence disentangled via a generality metric for natural and artificial intelligence
par: José Hernández-Orallo, et autres
Publié: (2021) - Artificial intelligence
-
An Artificial Intelligence-Based Alarm Strategy Facilitates Management of Acute Myocardial Infarction
par: Wen-Cheng Liu, et autres
Publié: (2021) -
The Influence of “Artificial Intelligence + Human–Computer Interaction” on Teachers’ Psychological Changes in Academic Management in Colleges
par: Honghai Guan, et autres
Publié: (2021)