Artificial intelligence reveals environmental constraints on colour diversity in insects
Deep learning has the potential to identify ecological relationships between environment and complex phenotypes that are difficult to quantify. Here, the authors use deep learning to analyse associations among elevation, climate and phenotype across ~2000 moth species in Taiwan.
Guardado en:
Autores principales: | Shipher Wu, Chun-Min Chang, Guan-Shuo Mai, Dustin R. Rubenstein, Chen-Ming Yang, Yu-Ting Huang, Hsu-Hong Lin, Li-Cheng Shih, Sheng-Wei Chen, Sheng-Feng Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc466aa936c54bc19c7b8be7368e654b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forage-Fed Insects as Food and Feed Source: Opportunities and Constraints of Edible Insects in the Tropics
por: Paula Andrea Espitia Buitrago, et al.
Publicado: (2021) -
General intelligence disentangled via a generality metric for natural and artificial intelligence
por: José Hernández-Orallo, et al.
Publicado: (2021) - Artificial intelligence
-
An Artificial Intelligence-Based Alarm Strategy Facilitates Management of Acute Myocardial Infarction
por: Wen-Cheng Liu, et al.
Publicado: (2021) -
The Influence of “Artificial Intelligence + Human–Computer Interaction” on Teachers’ Psychological Changes in Academic Management in Colleges
por: Honghai Guan, et al.
Publicado: (2021)