Majority scoring with backward elimination in PLS for high dimensional spectrum data
Abstract Variable selection is crucial issue for high dimensional data modeling, where sample size is smaller compared to number of variables. Recently, majority scoring of filter measures in PLS (MS-PLS) is introduced for variable selection in high dimensional data. Filter measures are not greedy f...
Guardado en:
Autor principal: | Freeh N. Alenezi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc55cfc4d44f4cbdb4a9bee95682efe4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A new method combining LDA and PLS for dimension reduction.
por: Liang Tang, et al.
Publicado: (2014) -
Elastic Correlation Adjusted Regression (ECAR) scores for high dimensional variable importance measuring
por: Yuan Zhou, et al.
Publicado: (2021) -
Multiple imputation with compatibility for high-dimensional data.
por: Faisal Maqbool Zahid, et al.
Publicado: (2021) -
Transforming Backward
por: Grant Leyton Simpson, et al.
Publicado: (2012) -
Muscle synergy differences between voluntary and reactive backward stepping
por: Shuaijie Wang, et al.
Publicado: (2021)