Ice Particle Properties Inferred From Aggregation Modelling
Abstract We generated a large number 105,000 of aggregates composed of various monomer types and sizes using an aggregation model. Combined with hydrodynamic theory, we derived ice particle properties such as mass, projected area, and terminal velocity as a function of monomer number and size. This...
Enregistré dans:
Auteurs principaux: | M. Karrer, A. Seifert, C. Siewert, D. Ori, A. vonLerber, S. Kneifel |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Geophysical Union (AGU)
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dc8e503aaf0144f8b0ee6d019e3d3d7b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM
par: Steffen Muench, et autres
Publié: (2020) -
Confronting the Challenge of Modeling Cloud and Precipitation Microphysics
par: Hugh Morrison, et autres
Publié: (2020) -
Significant Amplification of Instantaneous Extreme Precipitation With Convective Self‐Aggregation
par: Nicolas A. Da Silva, et autres
Publié: (2021) -
A Double‐Moment SBU‐YLIN Cloud Microphysics Scheme and Its Impact on a Squall Line Simulation
par: Xi Zhao, et autres
Publié: (2021) -
Data‐Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics‐Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica
par: B. Riel, et autres
Publié: (2021)