Selection of potent non-toxic inhibitory sequences from a randomized HIV-1 specific lentiviral short hairpin RNA library.
RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need to be stably expressed to prevent the emergence of viral...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc8f010013af4309bf754b005fde4b6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need to be stably expressed to prevent the emergence of viral escape variants. In this study, we engineered a randomized lentiviral H1-promoter driven shRNA-library against the viral genome. Potent HIV-1 specific shRNAs were selected by ganciclovir treatment of cell lines stably expressing the cDNA of Herpes Simplex Virus thymidine kinase (HSV-TK) fused to HIV-1 nucleotide sequences. More than 50% of 200 selected shRNAs inhibited an HIV-1 based luciferase reporter assay by more than 70%. Stable expression of some of those shRNAs in an HIV-1 permissive HeLa cell line inhibited infection of wild-type HIV-1 by more than 90%. The combination of a randomized shRNA-library directed against HIV-1 with a live cell selection procedure yielded non-toxic and highly efficient HIV-1 specific inhibitory sequences that could serve as valuable candidates for gene therapy studies. |
---|