Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies

Mubashar Rehman,1–3 Ayesha Ihsan,2 Asadullah Madni,1 Sadia Zafar Bajwa,2 Di Shi,3 Thomas J Webster,3,4 Waheed S Khan2 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; 2Nanobiotech Group, National Institute of Biotechnology and Genetic Engineerin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rehman M, Ihsan A, Madni A, Bajwa SZ, Shi D, Webster TJ, Khan WS
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/dc8fa1b50dda49a8902b95c4edb57622
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dc8fa1b50dda49a8902b95c4edb57622
record_format dspace
spelling oai:doaj.org-article:dc8fa1b50dda49a8902b95c4edb576222021-12-02T02:04:16ZSolid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies1178-2013https://doaj.org/article/dc8fa1b50dda49a8902b95c4edb576222017-11-01T00:00:00Zhttps://www.dovepress.com/solid-lipid-nanoparticles-for-thermoresponsive-targeting-evidence-from-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Mubashar Rehman,1–3 Ayesha Ihsan,2 Asadullah Madni,1 Sadia Zafar Bajwa,2 Di Shi,3 Thomas J Webster,3,4 Waheed S Khan2 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; 2Nanobiotech Group, National Institute of Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan; 3Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Thermoresponsive drug delivery systems are designed for the controlled and targeted release of therapeutic payload. These systems exploit hyperthermic tempera­tures (>39°C), which may be applied by some external means or due to an encountered symptom in inflammatory diseases such as cancer and arthritis. The objective of this paper was to provide some solid evidence in support of the hypothesis that solid lipid nanoparticles (SLNs) can be used for thermoresponsive targeting by undergoing solid–liquid phase transition at their melting point (MP). Thermoresponsive lipid mixtures were prepared by mixing solid and liquid natural fatty acids, and their MP was measured by differential scanning calorimetry (DSC). SLNs (MP 39°C) containing 5-fluorouracil (5-FU) were synthesized by hot melt encapsulation method, and were found to have spherical shape (transmission electron microscopy studies), desirable size (<200 nm), and enhanced physicochemical stability (Fourier transform infrared spectroscopy analysis). We observed a sustained release pattern (22%–34%) at 37°C (5 hours). On the other hand, >90% drug was released at 39°C after 5 hours, suggesting that the SLNs show thermoresponsive drug release, thus confirming our hypothesis. Drug release from SLNs at 39°C was similar to oleic acid and linoleic acid nanoemulsions used in this study, which further confirmed that thermoresponsive drug release is due to solid–liquid phase transition. Next, a differential pulse voltammetry-based electrochemical chemical detection method was developed for quick and real-time analysis of 5-FU release, which also confirmed thermoresponsive drug release behavior of SLNs. Blank SLNs were found to be biocompatible with human gingival fibroblast cells, although 5-FU-loaded SLNs showed some cytotoxicity after 24 hours. 5-FU-loaded SLNs showed thermoresponsive cytotoxicity to breast cancer cells (MDA-MB-231) as cytotoxicity was higher at 39°C (cell viability 72%–78%) compared to 37°C (cell viability >90%) within 1 hour. In conclusion, this study presents SLNs as a safe, simple, and effective platform for thermoresponsive targeting. Keywords: temperature sensitive, breast cancer, 5-fluorouracil, nanostructured lipid carriers, emulsions, fatty acidsRehman MIhsan AMadni ABajwa SZShi DWebster TJKhan WSDove Medical Pressarticletemperature sensitivebreast cancer5-fluorouracilnanostructured lipid carriersemulsionsfatty acidsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 8325-8336 (2017)
institution DOAJ
collection DOAJ
language EN
topic temperature sensitive
breast cancer
5-fluorouracil
nanostructured lipid carriers
emulsions
fatty acids
Medicine (General)
R5-920
spellingShingle temperature sensitive
breast cancer
5-fluorouracil
nanostructured lipid carriers
emulsions
fatty acids
Medicine (General)
R5-920
Rehman M
Ihsan A
Madni A
Bajwa SZ
Shi D
Webster TJ
Khan WS
Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
description Mubashar Rehman,1–3 Ayesha Ihsan,2 Asadullah Madni,1 Sadia Zafar Bajwa,2 Di Shi,3 Thomas J Webster,3,4 Waheed S Khan2 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; 2Nanobiotech Group, National Institute of Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan; 3Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Thermoresponsive drug delivery systems are designed for the controlled and targeted release of therapeutic payload. These systems exploit hyperthermic tempera­tures (>39°C), which may be applied by some external means or due to an encountered symptom in inflammatory diseases such as cancer and arthritis. The objective of this paper was to provide some solid evidence in support of the hypothesis that solid lipid nanoparticles (SLNs) can be used for thermoresponsive targeting by undergoing solid–liquid phase transition at their melting point (MP). Thermoresponsive lipid mixtures were prepared by mixing solid and liquid natural fatty acids, and their MP was measured by differential scanning calorimetry (DSC). SLNs (MP 39°C) containing 5-fluorouracil (5-FU) were synthesized by hot melt encapsulation method, and were found to have spherical shape (transmission electron microscopy studies), desirable size (<200 nm), and enhanced physicochemical stability (Fourier transform infrared spectroscopy analysis). We observed a sustained release pattern (22%–34%) at 37°C (5 hours). On the other hand, >90% drug was released at 39°C after 5 hours, suggesting that the SLNs show thermoresponsive drug release, thus confirming our hypothesis. Drug release from SLNs at 39°C was similar to oleic acid and linoleic acid nanoemulsions used in this study, which further confirmed that thermoresponsive drug release is due to solid–liquid phase transition. Next, a differential pulse voltammetry-based electrochemical chemical detection method was developed for quick and real-time analysis of 5-FU release, which also confirmed thermoresponsive drug release behavior of SLNs. Blank SLNs were found to be biocompatible with human gingival fibroblast cells, although 5-FU-loaded SLNs showed some cytotoxicity after 24 hours. 5-FU-loaded SLNs showed thermoresponsive cytotoxicity to breast cancer cells (MDA-MB-231) as cytotoxicity was higher at 39°C (cell viability 72%–78%) compared to 37°C (cell viability >90%) within 1 hour. In conclusion, this study presents SLNs as a safe, simple, and effective platform for thermoresponsive targeting. Keywords: temperature sensitive, breast cancer, 5-fluorouracil, nanostructured lipid carriers, emulsions, fatty acids
format article
author Rehman M
Ihsan A
Madni A
Bajwa SZ
Shi D
Webster TJ
Khan WS
author_facet Rehman M
Ihsan A
Madni A
Bajwa SZ
Shi D
Webster TJ
Khan WS
author_sort Rehman M
title Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
title_short Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
title_full Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
title_fullStr Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
title_full_unstemmed Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
title_sort solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies
publisher Dove Medical Press
publishDate 2017
url https://doaj.org/article/dc8fa1b50dda49a8902b95c4edb57622
work_keys_str_mv AT rehmanm solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
AT ihsana solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
AT madnia solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
AT bajwasz solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
AT shid solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
AT webstertj solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
AT khanws solidlipidnanoparticlesforthermoresponsivetargetingevidencefromspectrophotometryelectrochemicalandcytotoxicitystudies
_version_ 1718402741595799552