New Weighted Hermite–Hadamard Type Inequalities for Differentiable h-Convex and Quasi h-Convex Mappings
In this paper, new weighted Hermite–Hadamard type inequalities for differentiable h-convex and quasi h-convex functions are proved. These results generalize many results proved in earlier works for these classes of functions. Applications of some of our results to s˘-divergence and to statistics are...
Guardado en:
Autor principal: | Muhammad Amer Latif |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc9010f7bb874b8ab58880f9c00801ea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function
por: Saad Ihsan Butt, et al.
Publicado: (2021) -
Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity
por: Muhammad Adil Khan, et al.
Publicado: (2021) -
Hermite–Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
por: Dong Zhang, et al.
Publicado: (2021) -
Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
por: Budak Huseyin, et al.
Publicado: (2021) -
Extensions of Ostrowski Type Inequalities via h-Integrals and s-Convexity
por: Khuram Ali Khan, et al.
Publicado: (2021)