Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718
Inconel 718 is a Ni-based superalloy, which shows excellent mechanical properties such as tensile strength, fatigue strength, and creep strength at high temperatures up to 700 ℃. However, as Inconel 718 is a difficult-to-cut material, it causes severe wear of machining tools. Fabricating Inconel 718...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Japan Society of Mechanical Engineers
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dc9958aee4d943a498cf1d508b0201c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dc9958aee4d943a498cf1d508b0201c4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dc9958aee4d943a498cf1d508b0201c42021-11-29T06:04:29ZRelationship between internal defect size and fatigue limit in selective laser melted Inconel 7182187-974510.1299/mej.20-00362https://doaj.org/article/dc9958aee4d943a498cf1d508b0201c42020-11-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/8/1/8_20-00362/_pdf/-char/enhttps://doaj.org/toc/2187-9745Inconel 718 is a Ni-based superalloy, which shows excellent mechanical properties such as tensile strength, fatigue strength, and creep strength at high temperatures up to 700 ℃. However, as Inconel 718 is a difficult-to-cut material, it causes severe wear of machining tools. Fabricating Inconel 718 by Selective laser melting (SLM), a type of additive manufacturing (AM), is therefore expected as the manufacturing method to deal with this problem. However, it is impossible to completely prevent the occurrence of the internal defects in SLM parts. These internal defects deteriorate the mechanical properties such as the fatigue strength of SLM parts. Though the effect of the internal defect size on the fatigue limit of SLM alloys such as Ti6Al4V and AlSi10Mg has been extensively investigated, its effect on SLM Inconel 718 has not yet been investigated. In this study, Inconel 718 specimens with various internal defect sizes were fabricated by SLM and the effect of the internal defect size on their fatigue strength was investigated. Internal defect size distribution in as built specimen can be approximated by Gumbel distribution. The specimens containing internal defects with a diameter of about 400 μm showed no significant decrease in the fatigue strength. In the case of the plane specimen, the fatigue limit predicted using the statistic of extremes and the √area parameter model was 40% higher than that obtained experimentally.Manatsu OGAWAHARAShinya SASAKIThe Japan Society of Mechanical Engineersarticleadditive manufacturing(am)selective laser melting(slm)inconel 718fatigueinternal defectMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 8, Iss 1, Pp 20-00362-20-00362 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
additive manufacturing(am) selective laser melting(slm) inconel 718 fatigue internal defect Mechanical engineering and machinery TJ1-1570 |
spellingShingle |
additive manufacturing(am) selective laser melting(slm) inconel 718 fatigue internal defect Mechanical engineering and machinery TJ1-1570 Manatsu OGAWAHARA Shinya SASAKI Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718 |
description |
Inconel 718 is a Ni-based superalloy, which shows excellent mechanical properties such as tensile strength, fatigue strength, and creep strength at high temperatures up to 700 ℃. However, as Inconel 718 is a difficult-to-cut material, it causes severe wear of machining tools. Fabricating Inconel 718 by Selective laser melting (SLM), a type of additive manufacturing (AM), is therefore expected as the manufacturing method to deal with this problem. However, it is impossible to completely prevent the occurrence of the internal defects in SLM parts. These internal defects deteriorate the mechanical properties such as the fatigue strength of SLM parts. Though the effect of the internal defect size on the fatigue limit of SLM alloys such as Ti6Al4V and AlSi10Mg has been extensively investigated, its effect on SLM Inconel 718 has not yet been investigated. In this study, Inconel 718 specimens with various internal defect sizes were fabricated by SLM and the effect of the internal defect size on their fatigue strength was investigated. Internal defect size distribution in as built specimen can be approximated by Gumbel distribution. The specimens containing internal defects with a diameter of about 400 μm showed no significant decrease in the fatigue strength. In the case of the plane specimen, the fatigue limit predicted using the statistic of extremes and the √area parameter model was 40% higher than that obtained experimentally. |
format |
article |
author |
Manatsu OGAWAHARA Shinya SASAKI |
author_facet |
Manatsu OGAWAHARA Shinya SASAKI |
author_sort |
Manatsu OGAWAHARA |
title |
Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718 |
title_short |
Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718 |
title_full |
Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718 |
title_fullStr |
Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718 |
title_full_unstemmed |
Relationship between internal defect size and fatigue limit in selective laser melted Inconel 718 |
title_sort |
relationship between internal defect size and fatigue limit in selective laser melted inconel 718 |
publisher |
The Japan Society of Mechanical Engineers |
publishDate |
2020 |
url |
https://doaj.org/article/dc9958aee4d943a498cf1d508b0201c4 |
work_keys_str_mv |
AT manatsuogawahara relationshipbetweeninternaldefectsizeandfatiguelimitinselectivelasermeltedinconel718 AT shinyasasaki relationshipbetweeninternaldefectsizeandfatiguelimitinselectivelasermeltedinconel718 |
_version_ |
1718407615923355648 |