Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset

Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. C. Chakraborty, Xuhui Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090462