Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset

Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. C. Chakraborty, Xuhui Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dcc9c77c48794b95a7f267838e8a27d1
record_format dspace
spelling oai:doaj.org-article:dcc9c77c48794b95a7f267838e8a27d12021-12-02T18:50:49ZUsing supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset10.1038/s41597-021-01016-42052-4463https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d12021-09-01T00:00:00Zhttps://doi.org/10.1038/s41597-021-01016-4https://doaj.org/toc/2052-4463Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090462T. C. ChakrabortyXuhui LeeNature PortfolioarticleScienceQENScientific Data, Vol 8, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
T. C. Chakraborty
Xuhui Lee
Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
description Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090462
format article
author T. C. Chakraborty
Xuhui Lee
author_facet T. C. Chakraborty
Xuhui Lee
author_sort T. C. Chakraborty
title Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
title_short Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
title_full Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
title_fullStr Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
title_full_unstemmed Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
title_sort using supervised learning to develop barad, a 40-year monthly bias-adjusted global gridded radiation dataset
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d1
work_keys_str_mv AT tcchakraborty usingsupervisedlearningtodevelopbarada40yearmonthlybiasadjustedglobalgriddedradiationdataset
AT xuhuilee usingsupervisedlearningtodevelopbarada40yearmonthlybiasadjustedglobalgriddedradiationdataset
_version_ 1718377535624970240