Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dcc9c77c48794b95a7f267838e8a27d1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dcc9c77c48794b95a7f267838e8a27d12021-12-02T18:50:49ZUsing supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset10.1038/s41597-021-01016-42052-4463https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d12021-09-01T00:00:00Zhttps://doi.org/10.1038/s41597-021-01016-4https://doaj.org/toc/2052-4463Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090462T. C. ChakrabortyXuhui LeeNature PortfolioarticleScienceQENScientific Data, Vol 8, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q T. C. Chakraborty Xuhui Lee Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset |
description |
Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090462 |
format |
article |
author |
T. C. Chakraborty Xuhui Lee |
author_facet |
T. C. Chakraborty Xuhui Lee |
author_sort |
T. C. Chakraborty |
title |
Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset |
title_short |
Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset |
title_full |
Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset |
title_fullStr |
Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset |
title_full_unstemmed |
Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset |
title_sort |
using supervised learning to develop barad, a 40-year monthly bias-adjusted global gridded radiation dataset |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d1 |
work_keys_str_mv |
AT tcchakraborty usingsupervisedlearningtodevelopbarada40yearmonthlybiasadjustedglobalgriddedradiationdataset AT xuhuilee usingsupervisedlearningtodevelopbarada40yearmonthlybiasadjustedglobalgriddedradiationdataset |
_version_ |
1718377535624970240 |