Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
Measurement(s) radiation components at the surface Technology Type(s) machine learning Factor Type(s) radiation Sample Characteristic - Environment climate Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.15090...
Guardado en:
Autores principales: | T. C. Chakraborty, Xuhui Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dcc9c77c48794b95a7f267838e8a27d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High‐resolution gridded climate data for Europe based on bias‐corrected EURO‐CORDEX: The ECLIPS dataset
por: Debojyoti Chakraborty, et al.
Publicado: (2021) -
Intra-active Entanglements – An Interview with Karen Barad
por: Malou Juelskjær, et al.
Publicado: (2012) -
Different Kinds of Matter(s) – Subjectivity, Body, and Ethics in Barad’s Materialism
por: René Rosfort
Publicado: (2012) -
Challenging Mainstream Metaphysics – Barad’s Agential Realism and Feminist Philosophy of Religion
por: Matz Hammarström
Publicado: (2012) -
Measuring and mitigating PCR bias in microbiota datasets.
por: Justin D Silverman, et al.
Publicado: (2021)