Connected-UNets: a deep learning architecture for breast mass segmentation
Abstract Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of...
Guardado en:
Autores principales: | Asma Baccouche, Begonya Garcia-Zapirain, Cristian Castillo Olea, Adel S. Elmaghraby |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dccc5b2e5f29459eabd921a1aed54115 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation
por: Parvez Ahmad, et al.
Publicado: (2021) -
Deep Vision for Breast Cancer Classification and Segmentation
por: Lawrence Fulton, et al.
Publicado: (2021) -
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021) -
Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space
por: Guoqiang Men, et al.
Publicado: (2021) -
Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery
por: Sankha S. Basu, et al.
Publicado: (2021)