Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization
Abstract Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. Howe...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dcce73005ca6481c969d0e8d56ddfc6b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dcce73005ca6481c969d0e8d56ddfc6b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dcce73005ca6481c969d0e8d56ddfc6b2021-12-02T15:14:37ZSurface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization10.1038/s41598-021-98142-12045-2322https://doaj.org/article/dcce73005ca6481c969d0e8d56ddfc6b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98142-1https://doaj.org/toc/2045-2322Abstract Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.Ushashi BhattacharyaJia-Fong JhouYi-Fong ZouGerald AbrigoShu-Wei LinYun-Hsuan ChenFan-Ching ChienHwan-Ching TaiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ushashi Bhattacharya Jia-Fong Jhou Yi-Fong Zou Gerald Abrigo Shu-Wei Lin Yun-Hsuan Chen Fan-Ching Chien Hwan-Ching Tai Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
description |
Abstract Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities. |
format |
article |
author |
Ushashi Bhattacharya Jia-Fong Jhou Yi-Fong Zou Gerald Abrigo Shu-Wei Lin Yun-Hsuan Chen Fan-Ching Chien Hwan-Ching Tai |
author_facet |
Ushashi Bhattacharya Jia-Fong Jhou Yi-Fong Zou Gerald Abrigo Shu-Wei Lin Yun-Hsuan Chen Fan-Ching Chien Hwan-Ching Tai |
author_sort |
Ushashi Bhattacharya |
title |
Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
title_short |
Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
title_full |
Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
title_fullStr |
Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
title_full_unstemmed |
Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
title_sort |
surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dcce73005ca6481c969d0e8d56ddfc6b |
work_keys_str_mv |
AT ushashibhattacharya surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT jiafongjhou surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT yifongzou surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT geraldabrigo surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT shuweilin surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT yunhsuanchen surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT fanchingchien surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization AT hwanchingtai surfacechargemanipulationandelectrostaticimmobilizationofsynaptosomesforsuperresolutionimagingastudyontaucompartmentalization |
_version_ |
1718387602756730880 |