Analytical Modeling of Stresses in the Wall 0f the Human Heart

The mechanical function of the heart is governed by the contractile properties of the cells, the mechanical stiffness of the muscle and connective tissue, and pressure and volume loading conditions on the organ. Although ventricular pressures and volumes are available for assessing the global pumpi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. M. Bayoumi, Aziz Al Alawi
Formato: article
Lenguaje:EN
Publicado: Al-Khwarizmi College of Engineering – University of Baghdad 2009
Materias:
Acceso en línea:https://doaj.org/article/dccf9522687f417e8d53c19998f257cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The mechanical function of the heart is governed by the contractile properties of the cells, the mechanical stiffness of the muscle and connective tissue, and pressure and volume loading conditions on the organ. Although ventricular pressures and volumes are available for assessing the global pumping performance of the heart, the distribution of stress and strain that characterize regional ventricular function and change in cell biology must be known. The mechanics of the equatorial region of the left, ventricle was modeled by a thick-walled cylinder. The tangential (circumferential) stress, radial stress and longitudinal stress in the wall of the heart have been calculated. There are also significant torsional shear in the wall during both systole and diastole. In addition there should exist shear stress in the wall of the heart due to action of pressure on the curved surface.