Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons
System identification techniques—projection pursuit regression models (PPRs) and convolutional neural networks (CNNs)—provide state-of-the-art performance in predicting visual cortical neurons’ responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are ofte...
Guardado en:
Autores principales: | Ziniu Wu, Harold Rockwell, Yimeng Zhang, Shiming Tang, Tai Sing Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dce80bd5117545c39b83f2276e7d9353 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons.
por: Ziniu Wu, et al.
Publicado: (2021) -
Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.
por: Jonathan J Hunt, et al.
Publicado: (2013) -
Spatiotemporal functional organization of excitatory synaptic inputs onto macaque V1 neurons
por: Niansheng Ju, et al.
Publicado: (2020) -
Perceptual learning of fine contrast discrimination changes neuronal tuning and population coding in macaque V4
por: Mehdi Sanayei, et al.
Publicado: (2018) -
Invariance of visual operations at the level of receptive fields.
por: Tony Lindeberg
Publicado: (2013)