VTG-Net: A CNN Based Vessel Topology Graph Network for Retinal Artery/Vein Classification
From diagnosing cardiovascular diseases to analyzing the progression of diabetic retinopathy, accurate retinal artery/vein (A/V) classification is critical. Promising approaches for A/V classification, ranging from conventional graph based methods to recent convolutional neural network (CNN) based m...
Guardado en:
Autores principales: | Suraj Mishra, Ya Xing Wang, Chuan Chuan Wei, Danny Z. Chen, X. Sharon Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dcf8bea666134b4785802bcac8619162 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
A Lightweight CNN Architecture for Automatic Modulation Classification
por: Zhongyong Wang, et al.
Publicado: (2021) -
Deep Graph Convolutional Networks for Accurate Automatic Road Network Selection
por: Jing Zheng, et al.
Publicado: (2021) -
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Mapopa Chipofya, et al.
Publicado: (2021) -
The evaluation of synthetic datasets on training AlexNet for surgical tool detection
por: Ding N., et al.
Publicado: (2020)