Prediction for the Risk of Multiple Chronic Conditions Among Working Population in the United States With Machine Learning Models
<italic>Objective:</italic> Chronic diseases have become the most prevalent and costly health conditions in the healthcare industry, deteriorating the quality of life, adversely affecting the work productivity, and costing astounding medical resources. However, few studies have been cond...
Guardado en:
Autores principales: | Jingmei Yang, Xinglong Ju, Feng Liu, Onur Asan, Timothy Church, Jeff Smith |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd02874a4f8c4f0f96666300474ee351 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data
por: Aristos Aristodimou, et al.
Publicado: (2021) -
RADx Tech Viability and Steering Panels: A Model for MedTech Translational Grant Review
por: Paul Tessier, et al.
Publicado: (2021) -
Ultrasound Sample Entropy Imaging: A New Approach for Evaluating Hepatic Steatosis and Fibrosis
por: Hsien-Jung Chan, et al.
Publicado: (2021) -
Autonomous Robot for Removing Superficial Traumatic Blood
por: Baiquan Su, et al.
Publicado: (2021) -
Detecting Cataract Using Smartphones
por: Behnam Askarian, et al.
Publicado: (2021)