Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations

A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.

Guardado en:
Detalles Bibliográficos
Autores principales: Maya Wardeh, Marcus S. C. Blagrove, Kieran J. Sharkey, Matthew Baylis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.