Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species. |
---|