Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dd15b3a0cc0f427b9059ea3b379d9ee6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dd15b3a0cc0f427b9059ea3b379d9ee62021-12-02T18:02:51ZDivide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations10.1038/s41467-021-24085-w2041-1723https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee62021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24085-whttps://doaj.org/toc/2041-1723A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.Maya WardehMarcus S. C. BlagroveKieran J. SharkeyMatthew BaylisNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Maya Wardeh Marcus S. C. Blagrove Kieran J. Sharkey Matthew Baylis Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
description |
A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species. |
format |
article |
author |
Maya Wardeh Marcus S. C. Blagrove Kieran J. Sharkey Matthew Baylis |
author_facet |
Maya Wardeh Marcus S. C. Blagrove Kieran J. Sharkey Matthew Baylis |
author_sort |
Maya Wardeh |
title |
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
title_short |
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
title_full |
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
title_fullStr |
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
title_full_unstemmed |
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
title_sort |
divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6 |
work_keys_str_mv |
AT mayawardeh divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations AT marcusscblagrove divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations AT kieranjsharkey divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations AT matthewbaylis divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations |
_version_ |
1718378898492751872 |