Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations

A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.

Guardado en:
Detalles Bibliográficos
Autores principales: Maya Wardeh, Marcus S. C. Blagrove, Kieran J. Sharkey, Matthew Baylis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dd15b3a0cc0f427b9059ea3b379d9ee6
record_format dspace
spelling oai:doaj.org-article:dd15b3a0cc0f427b9059ea3b379d9ee62021-12-02T18:02:51ZDivide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations10.1038/s41467-021-24085-w2041-1723https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee62021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24085-whttps://doaj.org/toc/2041-1723A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.Maya WardehMarcus S. C. BlagroveKieran J. SharkeyMatthew BaylisNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Maya Wardeh
Marcus S. C. Blagrove
Kieran J. Sharkey
Matthew Baylis
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
description A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.
format article
author Maya Wardeh
Marcus S. C. Blagrove
Kieran J. Sharkey
Matthew Baylis
author_facet Maya Wardeh
Marcus S. C. Blagrove
Kieran J. Sharkey
Matthew Baylis
author_sort Maya Wardeh
title Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
title_short Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
title_full Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
title_fullStr Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
title_full_unstemmed Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
title_sort divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6
work_keys_str_mv AT mayawardeh divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations
AT marcusscblagrove divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations
AT kieranjsharkey divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations
AT matthewbaylis divideandconquermachinelearningintegratesmammalianandviraltraitswithnetworkfeaturestopredictvirusmammalassociations
_version_ 1718378898492751872