Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations
A more comprehensive map of viral host ranges can help identify and mitigate zoonotic and animal-disease risks. A divide-and-conquer approach which separates viral, mammalian and network features predicts over 20,000 unknown associations between known viruses and susceptible mammalian species.
Guardado en:
Autores principales: | Maya Wardeh, Marcus S. C. Blagrove, Kieran J. Sharkey, Matthew Baylis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd15b3a0cc0f427b9059ea3b379d9ee6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting mammalian hosts in which novel coronaviruses can be generated
por: Maya Wardeh, et al.
Publicado: (2021) -
A divide-and-conquer algorithm for quantum state preparation
por: Israel F. Araujo, et al.
Publicado: (2021) -
A comparison of pop and chop to divide and conquer in resident cataract surgery
por: Gross FJ, et al.
Publicado: (2016) -
TaxoDaCML: Taxonomy based Divide and Conquer using machine learning approach for DDoS attack classification
por: Onkar Thorat, et al.
Publicado: (2021) -
Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer.
por: Thomas S Rask, et al.
Publicado: (2010)