Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives

We propose a new functional form characterization of binary nonmanipulable social choice functions on a universal domain and an arbitrary, possibly infinite, set of agents. In order to achieve this, we considered the more general case of two-valued social choice functions and describe the structure...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anna De Simone, Ciro Tarantino
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/dd185fcb1bd943989fb372f6285cd691
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dd185fcb1bd943989fb372f6285cd691
record_format dspace
spelling oai:doaj.org-article:dd185fcb1bd943989fb372f6285cd6912021-11-11T18:21:14ZFunctional Form of Nonmanipulable Social Choice Functions with Two Alternatives10.3390/math92128272227-7390https://doaj.org/article/dd185fcb1bd943989fb372f6285cd6912021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2827https://doaj.org/toc/2227-7390We propose a new functional form characterization of binary nonmanipulable social choice functions on a universal domain and an arbitrary, possibly infinite, set of agents. In order to achieve this, we considered the more general case of two-valued social choice functions and describe the structure of the family consisting of groups of agents having no power to determine the values of a nonmanipulable social choice function. With the help of such a structure, we introduce a class of functions that we call powerless revealing social choice functions and show that the binary nonmanipulable social choice functions are the powerless revealing ones.Anna De SimoneCiro TarantinoMDPI AGarticlesocial choice functionsgroup strategy-proofnessindifferenceuniversal domainfunctional form characterizationMathematicsQA1-939ENMathematics, Vol 9, Iss 2827, p 2827 (2021)
institution DOAJ
collection DOAJ
language EN
topic social choice functions
group strategy-proofness
indifference
universal domain
functional form characterization
Mathematics
QA1-939
spellingShingle social choice functions
group strategy-proofness
indifference
universal domain
functional form characterization
Mathematics
QA1-939
Anna De Simone
Ciro Tarantino
Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives
description We propose a new functional form characterization of binary nonmanipulable social choice functions on a universal domain and an arbitrary, possibly infinite, set of agents. In order to achieve this, we considered the more general case of two-valued social choice functions and describe the structure of the family consisting of groups of agents having no power to determine the values of a nonmanipulable social choice function. With the help of such a structure, we introduce a class of functions that we call powerless revealing social choice functions and show that the binary nonmanipulable social choice functions are the powerless revealing ones.
format article
author Anna De Simone
Ciro Tarantino
author_facet Anna De Simone
Ciro Tarantino
author_sort Anna De Simone
title Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives
title_short Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives
title_full Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives
title_fullStr Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives
title_full_unstemmed Functional Form of Nonmanipulable Social Choice Functions with Two Alternatives
title_sort functional form of nonmanipulable social choice functions with two alternatives
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/dd185fcb1bd943989fb372f6285cd691
work_keys_str_mv AT annadesimone functionalformofnonmanipulablesocialchoicefunctionswithtwoalternatives
AT cirotarantino functionalformofnonmanipulablesocialchoicefunctionswithtwoalternatives
_version_ 1718431914714464256