Role of dry ozonization of basalt fibers on interfacial properties and fracture toughness of epoxy matrix composites
The mechanical properties of basalt fiber-reinforced epoxy composites (BFRPs) are significantly dependent on the interfacial adhesion between basalt fibers (BFs) and the epoxy matrix. In this study, we proposed a simple and efficient method for deep and stable penetration of BFs into the epoxy matri...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd25422a54584eba827ce38edcbe3d51 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The mechanical properties of basalt fiber-reinforced epoxy composites (BFRPs) are significantly dependent on the interfacial adhesion between basalt fibers (BFs) and the epoxy matrix. In this study, we proposed a simple and efficient method for deep and stable penetration of BFs into the epoxy matrix through dry-ozone treatments. To confirm the efficiency of the proposed method, BFRPs were fabricated using two types of composites: untreated BFs and dry-ozonized BFs in varying amounts, and the optimum amount of BFs for all the composites fabricated in this work was 60 wt%. With the addition of this amount of dry-ozonized BFs, the interlaminar shear strength and fracture toughness of the composites were enhanced by 21.2 and 23.2%, respectively, as compared with untreated BFs. The related reinforcing mechanisms were also analyzed, and the enhanced interfacial adhesion was mainly attributed to the mechanical interlocking effect. This approach shows that the dry-ozone treatment of BFs is a simple and efficient method for the preparation of BFRPs with excellent interfacial adhesion, which can be a potential application in the auto parts industry. |
---|