Strongly not relatives Kähler manifolds

In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zedda Michela
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/dd265c90a05643bfbf599301cb448fad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter families of Bergman-Hartogs and Fock-Bargmann-Hartogs domains are strongly not relative to projective Kähler manifolds.