Transfer Learning-Based Algorithms for the Detection of Fatigue Crack Initiation Sites: A Comparative Study
The identification of fatigue crack initiation sites (FCISs) is routinely performed in the field of engineering failure analyses; this process is not only time-consuming but also knowledge-intensive. The emergence of convolutional neural networks (CNNs) has inspired numerous innovative solutions for...
Guardado en:
Autores principales: | S.Y. Wang, T. Guo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd2b81edad664600ba03a64c98db147b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fatigue life prediction of 316 stainless steel in simulated PWR primary water by time domain analysis based on short fatigue crack growth behavior
por: Choongmoo SHIM, et al.
Publicado: (2017) -
Crack initiation site at the interface between a nano-component and substrate
por: Van Lich LE, et al.
Publicado: (2014) -
Fatigue crack prognosis using Bayesian probabilistic modelling
por: Wenyi WANG, et al.
Publicado: (2017) -
Fracture mechanics assessment of fatigue semi-elliptical cracks in butt-welded joints
por: Hernández Laguna,Edgar, et al.
Publicado: (2018) -
Evaluation of detailed transverse crack propagation toward thickness direction for CF/PEEK quasi-isotropic laminates under fatigue loading
por: Dai TSUNODA, et al.
Publicado: (2020)