Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields

Abstract We explore a class of quantum control operations based on a wide family of harmonic magnetic fields that vary softly in time. Depending on the magnetic field amplitudes taking part, these control operations can produce either squeezing or loop (orbit) effects, and even parametric resonances...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jesús Fuentes
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dd431d13f0414de4aa3f1e5f30f7d5e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dd431d13f0414de4aa3f1e5f30f7d5e2
record_format dspace
spelling oai:doaj.org-article:dd431d13f0414de4aa3f1e5f30f7d5e22021-12-02T13:58:12ZQuantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields10.1038/s41598-020-79309-82045-2322https://doaj.org/article/dd431d13f0414de4aa3f1e5f30f7d5e22020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79309-8https://doaj.org/toc/2045-2322Abstract We explore a class of quantum control operations based on a wide family of harmonic magnetic fields that vary softly in time. Depending on the magnetic field amplitudes taking part, these control operations can produce either squeezing or loop (orbit) effects, and even parametric resonances, on the canonical variables. For these purposes we focus our attention on the evolution of observables whose dynamical picture is ascribed to a quadratic Hamiltonian that depends explicitly on time. In the first part of this work we survey such operations in terms of biharmonic magnetic fields. The dynamical analysis is simplified using a stability diagram in the amplitude space, where the points of each region will characterise a specific control operation. We discuss how the evolution loop effects are formed by fuzzy (non-commutative) trajectories that can be closed or open, in the latter case, even hiding some features that can be used to manipulate the operational time. In the second part, we generalise the case of biharmonic fields and translate the discussion to the case of polyharmonic fields. Using elementary properties of the Toeplitz matrices, we can derive exact solutions of the problem in a symmetric evolution interval, leading to the temporal profile of those magnetic fields suitable to achieve specific control operations. Some of the resulting fuzzy orbits can be destroyed by the influence of external forces, while others simply remain stable.Jesús FuentesNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jesús Fuentes
Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
description Abstract We explore a class of quantum control operations based on a wide family of harmonic magnetic fields that vary softly in time. Depending on the magnetic field amplitudes taking part, these control operations can produce either squeezing or loop (orbit) effects, and even parametric resonances, on the canonical variables. For these purposes we focus our attention on the evolution of observables whose dynamical picture is ascribed to a quadratic Hamiltonian that depends explicitly on time. In the first part of this work we survey such operations in terms of biharmonic magnetic fields. The dynamical analysis is simplified using a stability diagram in the amplitude space, where the points of each region will characterise a specific control operation. We discuss how the evolution loop effects are formed by fuzzy (non-commutative) trajectories that can be closed or open, in the latter case, even hiding some features that can be used to manipulate the operational time. In the second part, we generalise the case of biharmonic fields and translate the discussion to the case of polyharmonic fields. Using elementary properties of the Toeplitz matrices, we can derive exact solutions of the problem in a symmetric evolution interval, leading to the temporal profile of those magnetic fields suitable to achieve specific control operations. Some of the resulting fuzzy orbits can be destroyed by the influence of external forces, while others simply remain stable.
format article
author Jesús Fuentes
author_facet Jesús Fuentes
author_sort Jesús Fuentes
title Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
title_short Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
title_full Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
title_fullStr Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
title_full_unstemmed Quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
title_sort quantum control operations with fuzzy evolution trajectories based on polyharmonic magnetic fields
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/dd431d13f0414de4aa3f1e5f30f7d5e2
work_keys_str_mv AT jesusfuentes quantumcontroloperationswithfuzzyevolutiontrajectoriesbasedonpolyharmonicmagneticfields
_version_ 1718392231410270208