Deep learning of contagion dynamics on complex networks
Prediction of contagion dynamics is of relevance for epidemic and social complex networks. Murphy et al. propose a data-driven approach based on deep learning which allows to learn mechanisms governing network dynamics and make predictions beyond the training data for arbitrary network structures.
Enregistré dans:
Auteurs principaux: | Charles Murphy, Edward Laurence, Antoine Allard |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dd478dea3f164012a35d9b2dec8c9bb8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Emergence of hysteresis loop in social contagions on complex networks
par: Zhen Su, et autres
Publié: (2017) -
Physiological dynamics of stress contagion
par: Stephanie J. Dimitroff, et autres
Publié: (2017) -
Exercise contagion in a global social network
par: Sinan Aral, et autres
Publié: (2017) -
Dynamics of social contagions with local trend imitation
par: Xuzhen Zhu, et autres
Publié: (2018) -
Topological measures for identifying and predicting the spread of complex contagions
par: Douglas Guilbeault, et autres
Publié: (2021)