Driven translocation of a semi-flexible polymer through a nanopore

Abstract We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jalal Sarabadani, Timo Ikonen, Harri Mökkönen, Tapio Ala-Nissila, Spencer Carson, Meni Wanunu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dd49193fd36245c5a19c5189f4478cb8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dd49193fd36245c5a19c5189f4478cb8
record_format dspace
spelling oai:doaj.org-article:dd49193fd36245c5a19c5189f4478cb82021-12-02T15:06:15ZDriven translocation of a semi-flexible polymer through a nanopore10.1038/s41598-017-07227-32045-2322https://doaj.org/article/dd49193fd36245c5a19c5189f4478cb82017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07227-3https://doaj.org/toc/2045-2322Abstract We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length $${\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}$$ ℓ ˜ p the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}{\boldsymbol{\ll }}1$$ N / ℓ ˜ p ≪ 1 , Gaussian $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}\sim {\bf{1}}{{\bf{0}}}^{{\bf{2}}}$$ N / ℓ ˜ p ∼ 1 0 2 and excluded volume chain $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\kappa }}}}_{{\boldsymbol{p}}}$$ N / κ ˜ p  ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data.Jalal SarabadaniTimo IkonenHarri MökkönenTapio Ala-NissilaSpencer CarsonMeni WanunuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jalal Sarabadani
Timo Ikonen
Harri Mökkönen
Tapio Ala-Nissila
Spencer Carson
Meni Wanunu
Driven translocation of a semi-flexible polymer through a nanopore
description Abstract We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length $${\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}$$ ℓ ˜ p the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}{\boldsymbol{\ll }}1$$ N / ℓ ˜ p ≪ 1 , Gaussian $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\ell }}}}_{{\boldsymbol{p}}}\sim {\bf{1}}{{\bf{0}}}^{{\bf{2}}}$$ N / ℓ ˜ p ∼ 1 0 2 and excluded volume chain $${\boldsymbol{N}}{\boldsymbol{/}}{\tilde{{\boldsymbol{\kappa }}}}_{{\boldsymbol{p}}}$$ N / κ ˜ p  ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data.
format article
author Jalal Sarabadani
Timo Ikonen
Harri Mökkönen
Tapio Ala-Nissila
Spencer Carson
Meni Wanunu
author_facet Jalal Sarabadani
Timo Ikonen
Harri Mökkönen
Tapio Ala-Nissila
Spencer Carson
Meni Wanunu
author_sort Jalal Sarabadani
title Driven translocation of a semi-flexible polymer through a nanopore
title_short Driven translocation of a semi-flexible polymer through a nanopore
title_full Driven translocation of a semi-flexible polymer through a nanopore
title_fullStr Driven translocation of a semi-flexible polymer through a nanopore
title_full_unstemmed Driven translocation of a semi-flexible polymer through a nanopore
title_sort driven translocation of a semi-flexible polymer through a nanopore
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/dd49193fd36245c5a19c5189f4478cb8
work_keys_str_mv AT jalalsarabadani driventranslocationofasemiflexiblepolymerthroughananopore
AT timoikonen driventranslocationofasemiflexiblepolymerthroughananopore
AT harrimokkonen driventranslocationofasemiflexiblepolymerthroughananopore
AT tapioalanissila driventranslocationofasemiflexiblepolymerthroughananopore
AT spencercarson driventranslocationofasemiflexiblepolymerthroughananopore
AT meniwanunu driventranslocationofasemiflexiblepolymerthroughananopore
_version_ 1718388547007807488