Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach
Abstract Myopia, or short-sightedness, is a highly prevalent refractive disorder in which the eye’s focal length is too short for its axial dimension in its relaxed state. High myopia is associated with increased risks of blinding ocular complications and abnormal eye shape. In addition to consisten...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd546f60ec30486cbb72a1b692078316 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dd546f60ec30486cbb72a1b692078316 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dd546f60ec30486cbb72a1b6920783162021-12-02T13:34:45ZCorneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach10.1038/s41598-021-84904-42045-2322https://doaj.org/article/dd546f60ec30486cbb72a1b6920783162021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84904-4https://doaj.org/toc/2045-2322Abstract Myopia, or short-sightedness, is a highly prevalent refractive disorder in which the eye’s focal length is too short for its axial dimension in its relaxed state. High myopia is associated with increased risks of blinding ocular complications and abnormal eye shape. In addition to consistent findings on posterior segment anomalies in high myopia (e.g., scleral remodeling), more recent biometric and biomechanical data in myopic humans and animal models also indicate anterior segment anomalies (e.g., corneal biomechanical properties). Because the cornea is the anterior-most ocular tissue, providing essential refractive power and physiological stability, it is important to understand the biochemical signaling pathway during myopia development. This study first aimed to establish the entire chicken corneal proteome. Then, using the classical form deprivation paradigm to induce high myopia in chicks, state-of-the-art bioinformatics technologies were applied to identify eight differentially expressed proteins in the highly myopic cornea. These results provide strong foundation for future corneal research, especially those using chicken as an animal model for myopia development.Byung Soo KangThomas Chuen LamJimmy Ka-wai CheungKing Kit LiChea-su KeeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Byung Soo Kang Thomas Chuen Lam Jimmy Ka-wai Cheung King Kit Li Chea-su Kee Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach |
description |
Abstract Myopia, or short-sightedness, is a highly prevalent refractive disorder in which the eye’s focal length is too short for its axial dimension in its relaxed state. High myopia is associated with increased risks of blinding ocular complications and abnormal eye shape. In addition to consistent findings on posterior segment anomalies in high myopia (e.g., scleral remodeling), more recent biometric and biomechanical data in myopic humans and animal models also indicate anterior segment anomalies (e.g., corneal biomechanical properties). Because the cornea is the anterior-most ocular tissue, providing essential refractive power and physiological stability, it is important to understand the biochemical signaling pathway during myopia development. This study first aimed to establish the entire chicken corneal proteome. Then, using the classical form deprivation paradigm to induce high myopia in chicks, state-of-the-art bioinformatics technologies were applied to identify eight differentially expressed proteins in the highly myopic cornea. These results provide strong foundation for future corneal research, especially those using chicken as an animal model for myopia development. |
format |
article |
author |
Byung Soo Kang Thomas Chuen Lam Jimmy Ka-wai Cheung King Kit Li Chea-su Kee |
author_facet |
Byung Soo Kang Thomas Chuen Lam Jimmy Ka-wai Cheung King Kit Li Chea-su Kee |
author_sort |
Byung Soo Kang |
title |
Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach |
title_short |
Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach |
title_full |
Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach |
title_fullStr |
Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach |
title_full_unstemmed |
Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach |
title_sort |
corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free swath-ms quantification approach |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dd546f60ec30486cbb72a1b692078316 |
work_keys_str_mv |
AT byungsookang cornealproteomeanddifferentiallyexpressedcornealproteinsinhighlymyopicchicksusingalabelfreeswathmsquantificationapproach AT thomaschuenlam cornealproteomeanddifferentiallyexpressedcornealproteinsinhighlymyopicchicksusingalabelfreeswathmsquantificationapproach AT jimmykawaicheung cornealproteomeanddifferentiallyexpressedcornealproteinsinhighlymyopicchicksusingalabelfreeswathmsquantificationapproach AT kingkitli cornealproteomeanddifferentiallyexpressedcornealproteinsinhighlymyopicchicksusingalabelfreeswathmsquantificationapproach AT cheasukee cornealproteomeanddifferentiallyexpressedcornealproteinsinhighlymyopicchicksusingalabelfreeswathmsquantificationapproach |
_version_ |
1718392764706586624 |