Weighted Sobolev–Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>X</mi><mn>0</mn></msub><mo>,</mo><msub><mi>X</mi><mn>1</mn></m...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd5ddfc7069940909f1db705dffc86a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>X</mi><mn>0</mn></msub><mo>,</mo><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>X</mi><mi>q</mi></msub><mrow><mo>(</mo><mi>q</mi><mo><</mo><mi>N</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be real vector fields, which are left invariant on homogeneous group <i>G</i>, provided that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>X</mi><mn>0</mn></msub></semantics></math></inline-formula> is homogeneous of degree two and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>X</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> are homogeneous of degree one. We consider the following nondivergence degenerate operator with drift <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>=</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>q</mi></munderover></mstyle><mrow><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><msub><mi>X</mi><mi>i</mi></msub><msub><mi>X</mi><mi>j</mi></msub></mrow><mo>+</mo><mrow><msub><mi>a</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><msub><mi>X</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, where the coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> belonging to vanishing mean oscillation space are bounded measurable functions. Furthermore, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> satisfies the uniform ellipticity condition on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>q</mi></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>. We obtain the local weighted Sobolev–Morrey estimates by applying the boundedness of commutators and interpolation inequalities on weighted Morrey spaces. |
---|