Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.

Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Emily S Almberg, Paul C Cross, Christopher J Johnson, Dennis M Heisey, Bryan J Richards
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dd6b95d180d342ed8e915a80f1aee096
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dd6b95d180d342ed8e915a80f1aee096
record_format dspace
spelling oai:doaj.org-article:dd6b95d180d342ed8e915a80f1aee0962021-11-18T06:54:00ZModeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.1932-620310.1371/journal.pone.0019896https://doaj.org/article/dd6b95d180d342ed8e915a80f1aee0962011-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21603638/?tool=EBIhttps://doaj.org/toc/1932-6203Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R(0), may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.Emily S AlmbergPaul C CrossChristopher J JohnsonDennis M HeiseyBryan J RichardsPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 5, p e19896 (2011)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Emily S Almberg
Paul C Cross
Christopher J Johnson
Dennis M Heisey
Bryan J Richards
Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
description Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R(0), may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.
format article
author Emily S Almberg
Paul C Cross
Christopher J Johnson
Dennis M Heisey
Bryan J Richards
author_facet Emily S Almberg
Paul C Cross
Christopher J Johnson
Dennis M Heisey
Bryan J Richards
author_sort Emily S Almberg
title Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
title_short Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
title_full Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
title_fullStr Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
title_full_unstemmed Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
title_sort modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/dd6b95d180d342ed8e915a80f1aee096
work_keys_str_mv AT emilysalmberg modelingroutesofchronicwastingdiseasetransmissionenvironmentalprionpersistencepromotesdeerpopulationdeclineandextinction
AT paulccross modelingroutesofchronicwastingdiseasetransmissionenvironmentalprionpersistencepromotesdeerpopulationdeclineandextinction
AT christopherjjohnson modelingroutesofchronicwastingdiseasetransmissionenvironmentalprionpersistencepromotesdeerpopulationdeclineandextinction
AT dennismheisey modelingroutesofchronicwastingdiseasetransmissionenvironmentalprionpersistencepromotesdeerpopulationdeclineandextinction
AT bryanjrichards modelingroutesofchronicwastingdiseasetransmissionenvironmentalprionpersistencepromotesdeerpopulationdeclineandextinction
_version_ 1718424259933503488