Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie

We developed a Bayesian hierarchical modeling framework to establish a short-term forecasting model of particulate cyanobacterial toxin concentrations in Western Lake Erie using chlorophyll a concentration as the predictor. The model evolves over time with additional data to reflect the changing dyn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Song S. Qian, Craig A. Stow, Freya E. Rowland, Qianqian Liu, Mark D. Rowe, Eric J. Anderson, Richard P. Stumpf, Thomas H. Johengen
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/dd71d3ebfc8a4300ac82d79ff18dce93
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dd71d3ebfc8a4300ac82d79ff18dce93
record_format dspace
spelling oai:doaj.org-article:dd71d3ebfc8a4300ac82d79ff18dce932021-12-01T04:58:34ZChlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie1470-160X10.1016/j.ecolind.2021.108055https://doaj.org/article/dd71d3ebfc8a4300ac82d79ff18dce932021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X21007202https://doaj.org/toc/1470-160XWe developed a Bayesian hierarchical modeling framework to establish a short-term forecasting model of particulate cyanobacterial toxin concentrations in Western Lake Erie using chlorophyll a concentration as the predictor. The model evolves over time with additional data to reflect the changing dynamics of cyanobacterial toxin production. Specifically, parameters of the empirical relationship between the cyanobacterial toxin microcystin and chlorophyll a concentrations are allowed to vary annually and seasonally under a hierarchical framework. As such, the model updated using the most recent sampling data is suited to provide short-term forecasts. The reduced model predictive uncertainty makes the model a viable tool for risk assessment. Using data from the long-term Western Lake Erie harmful algal bloom monitoring program (2008–2018), we illustrate the model-building and model-updating process and the application of the model for short-term risk assessment. The modeling process demonstrates the use of the Bayesian hierarchical modeling framework for developing informative priors in Bayesian modeling.Song S. QianCraig A. StowFreya E. RowlandQianqian LiuMark D. RoweEric J. AndersonRichard P. StumpfThomas H. JohengenElsevierarticleBayesian hierarchical modelharmful algal bloomsinformative priorspredictive modelsequential updatingEcologyQH540-549.5ENEcological Indicators, Vol 130, Iss , Pp 108055- (2021)
institution DOAJ
collection DOAJ
language EN
topic Bayesian hierarchical model
harmful algal blooms
informative priors
predictive model
sequential updating
Ecology
QH540-549.5
spellingShingle Bayesian hierarchical model
harmful algal blooms
informative priors
predictive model
sequential updating
Ecology
QH540-549.5
Song S. Qian
Craig A. Stow
Freya E. Rowland
Qianqian Liu
Mark D. Rowe
Eric J. Anderson
Richard P. Stumpf
Thomas H. Johengen
Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
description We developed a Bayesian hierarchical modeling framework to establish a short-term forecasting model of particulate cyanobacterial toxin concentrations in Western Lake Erie using chlorophyll a concentration as the predictor. The model evolves over time with additional data to reflect the changing dynamics of cyanobacterial toxin production. Specifically, parameters of the empirical relationship between the cyanobacterial toxin microcystin and chlorophyll a concentrations are allowed to vary annually and seasonally under a hierarchical framework. As such, the model updated using the most recent sampling data is suited to provide short-term forecasts. The reduced model predictive uncertainty makes the model a viable tool for risk assessment. Using data from the long-term Western Lake Erie harmful algal bloom monitoring program (2008–2018), we illustrate the model-building and model-updating process and the application of the model for short-term risk assessment. The modeling process demonstrates the use of the Bayesian hierarchical modeling framework for developing informative priors in Bayesian modeling.
format article
author Song S. Qian
Craig A. Stow
Freya E. Rowland
Qianqian Liu
Mark D. Rowe
Eric J. Anderson
Richard P. Stumpf
Thomas H. Johengen
author_facet Song S. Qian
Craig A. Stow
Freya E. Rowland
Qianqian Liu
Mark D. Rowe
Eric J. Anderson
Richard P. Stumpf
Thomas H. Johengen
author_sort Song S. Qian
title Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
title_short Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
title_full Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
title_fullStr Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
title_full_unstemmed Chlorophyll a as an indicator of microcystin: Short-term forecasting and risk assessment in Lake Erie
title_sort chlorophyll a as an indicator of microcystin: short-term forecasting and risk assessment in lake erie
publisher Elsevier
publishDate 2021
url https://doaj.org/article/dd71d3ebfc8a4300ac82d79ff18dce93
work_keys_str_mv AT songsqian chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT craigastow chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT freyaerowland chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT qianqianliu chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT markdrowe chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT ericjanderson chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT richardpstumpf chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
AT thomashjohengen chlorophyllaasanindicatorofmicrocystinshorttermforecastingandriskassessmentinlakeerie
_version_ 1718405694946803712