Helical Phase Structure of Radiation from an Electron in Circular Motion
Abstract We theoretically show that a single free electron in circular motion radiates an electromagnetic wave possessing helical phase structure, which is closely related to orbital angular momentum carried by it. We experimentally demonstrate it by interference and double-slit diffraction experime...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd792bd00149428eb46e03d212ed775e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We theoretically show that a single free electron in circular motion radiates an electromagnetic wave possessing helical phase structure, which is closely related to orbital angular momentum carried by it. We experimentally demonstrate it by interference and double-slit diffraction experiments on radiation from relativistic electrons in spiral motion. Our results indicate that photons carrying orbital angular momentum should be created naturally by cyclotron/synchrotron radiations or Compton scatterings in various situations in cosmic space. We propose promising laboratory vortex photon sources in various wavelengths ranging from radio wave to gamma-rays. |
---|