Analogical discovery of disordered perovskite oxides by crystal structure information hidden in unsupervised material fingerprints
Abstract Compositional disorder induces myriad captivating phenomena in perovskites. Target-driven discovery of perovskite solid solutions has been a great challenge due to the analytical complexity introduced by disorder. Here, we demonstrate that an unsupervised deep learning strategy can find fin...
Guardado en:
Autores principales: | Achintha Ihalage, Yang Hao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd7d4d6b1a74428bad401fbb907fac8d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
por: Zhilong Wang, et al.
Publicado: (2021) -
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021) -
Defect detection in atomic-resolution images via unsupervised learning with translational invariance
por: Yueming Guo, et al.
Publicado: (2021) -
Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles
por: Yuhang Liang, et al.
Publicado: (2021)