Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato

Abstract The basic helix-loop-helix (bHLH) proteins are a large family of transcription factors that control various developmental processes in eukaryotes, but the biological roles of most bHLH proteins are not very clear, especially in tomato. In this study, a PRE-like atypical bHLH gene was isolat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhiguo Zhu, Guoping Chen, Xuhu Guo, Wencheng Yin, Xiaohui Yu, Jingtao Hu, Zongli Hu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dd964b934e4242c1b719a8208b77b29e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The basic helix-loop-helix (bHLH) proteins are a large family of transcription factors that control various developmental processes in eukaryotes, but the biological roles of most bHLH proteins are not very clear, especially in tomato. In this study, a PRE-like atypical bHLH gene was isolated and designated as SlPRE2 in tomato. SlPRE2 was highly expressed in immature-green fruits, moderately in young leaves, flowers, and mature-green fruits. To further research the function of SlPRE2, a 35 S:PRE2 binary vector was constructed and transformed into wild type tomato. The transgenic plants showed increased leaf angle and stem internode length, rolling leaves with decreased chlorophyll content. The water loss rate of detached leaves was increased in young transgenic lines but depressed in mature leaves. Besides, overexpression of SlPRE2 promoted morphogenesis in seedling development, producing light-green unripening fruits and yellowing ripen fruits with reduced chlorophyll and carotenoid accumulation in pericarps, respectively. Quantitative RT-PCR analysis showed that expression of the chlorophyll related genes, such as GOLDEN 2-LIKE and RbcS, were decreased in unripening 35  S:PRE2 fruit, and carotenoid biosynthesis-related genes PHYTOENE SYNTHASE1A and ζ-CAROTENE DESATURASE in ripening fruit were also down-regulated. These results suggest that SlPRE2 affects plant morphology and is a negative regulator of fruit pigment accumulation.